| A. | $\sqrt{65}$ | B. | $\frac{3\sqrt{65}}{2}$ | C. | 2$\sqrt{65}$ | D. | $\frac{5\sqrt{65}}{2}$ |
分析 根据已知中的点E,F的位置,可知入射角的正切值为$\frac{7}{4}$,通过相似三角形,来确定反射后的点的位置,从而可得反射的次数.再由勾股定理就可以求出小球经过的路径的总长度.
解答
解:根据已知中的点E,F的位置,可知入射角的正切值为$\frac{7}{4}$,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为M,在DA上,且DM=$\frac{2}{7}$DA,第三次碰撞点为N,在DC上,且DN=$\frac{1}{2}$DC,第四次碰撞点为G,在CB上,且CG=$\frac{2}{7}$BC,第五次碰撞点为H,在DA上,且AH=$\frac{1}{7}$AD,第六次碰撞点为Z,在AB上,且AZ=$\frac{1}{4}$AD,第七次碰撞点为I,在BC上,且BI=$\frac{3}{7}$AD,第八次碰撞点为D,再反方向可到E,
由勾股定理可以得出EF=HZ=$\sqrt{(\frac{1}{4})^{2}+(\frac{1}{7})^{2}}$=$\frac{\sqrt{65}}{28}$,FM=GH=ID=$\frac{4\sqrt{65}}{28}$,MN=NG=$\frac{2\sqrt{65}}{28}$,ZI=$\frac{3\sqrt{65}}{28}$,
P所经过的路程为($\frac{\sqrt{65}}{28}$×2+$\frac{4\sqrt{65}}{28}$×3+$\frac{2\sqrt{65}}{28}$×2+$\frac{3\sqrt{65}}{28}$)×2=$\frac{3\sqrt{65}}{2}$.
故选:B.
点评 本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形的性质来确定反射后的点的位置,从而可得反射的次数,由勾股定理来确定小球经过的路程,是一道数学物理学科综合试题,难度较大.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2ab+3ab=5a2b2 | B. | a2•a3=a6 | C. | a-2=$\frac{1}{{a}^{2}}$(a≠0) | D. | $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1.28m | B. | 1.13m | C. | 0.64m | D. | 0.32m |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com