精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于(  )

A. 3:2:1 B. 5:3:1 C. 25:12:5 D. 51:24:10

【答案】D

【解析】连接EM,

CE:CD=CM:CA=1:3

∴EM平行于AD

∴△BHD∽△BME,△CEM∽△CDA

∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3

AH=(3﹣)ME,

∴AH:ME=12:5

∴HG:GM=AH:EM=12:5

GM=5k,GH=12k,

∵BH:HM=3:2=BH:17k

BH=K,

BH:HG:GM=k:12k:5k=51:24:10

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】【操作发现】如图 1,△ABC 为等边三角形,点 D AB 边上的一点,∠DCE=30°,将线段 CD 绕点 C 顺时针旋转 60°得到线段 CF,连接 AFEF. 请直接 写出下列结果:

① ∠EAF的度数为__________

DEEF之间的数量关系为__________

【类比探究】如图 2,△ABC 为等腰直角三角形,∠ACB=90°,点 D AB 边上的一点∠DCE=45°,将线段 CD 绕点 C 顺时针旋转 90°得到线段 CF,连接 AFEF.

①则∠EAF的度数为__________

② 线段 AEEDDB 之间有什么数量关系?请说明理由;

【实际应用】如图 3,△ABC 是一个三角形的余料.小张同学量得∠ACB=120°,AC=BC, 他在边 BC 上取了 DE 两点,并量得∠BCD=15°、∠DCE=60°,这样 CDCE 将△

ABC 分成三个小三角形,请求△BCD、△DCE、△ACE 这三个三角形的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,AC=BC,点OAB上,经过点A的⊙OBC相切于点D,交AB于点E

1)求证:AD平分∠BAC

2)若CD=1,求图中阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).

(1)求反比例函数和一次函数的表达式;

(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E是对角线BD上一点,且满足BEAD,连接CE并延长交AD于点F,连接AE,过B点作BGAE于点G,延长BGAD于点H.在下列结论中:①AHDF;②∠AEF45°;③S四边形EFHGSDEF+SAGH;④BH平分∠ABE.其中不正确的结论有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,DBDAADB的平分线交AB于点F,交CB的延长线于点E,连接AE.

(1)求证:四边形AEBD是菱形;

(2)DCEFBF3,求菱形AEBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一般地,任何一个无限循环小数都可以写成分数形式,如0.0.777…,它的循环节有一位,设0. x,由0. 0777…,可知,10x7.777…,所以10xx7,得x.于是,得0. ,再如0.0.737373…,它的循环节有两位,设0.x,由0.0.737373…可知,100x73.7373…,所以100xx73.解方程得x.于是,得0. ,类比上述方法,无限循环小数0. 3化为分数形式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;

(1)求反比例函数的解析式;

(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;

(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】市某中学开展以三创一办为中心,以校园文明为主题的手抄报比赛.同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题:

(1)一等奖所占的百分比是__________.

(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整.

(3)各奖项获奖学生分别有多少人?

查看答案和解析>>

同步练习册答案