分析 根据角平分线的性质得到EC=ED,根据全等三角形的性质得到FD=FC,根据线段垂直平分线的判定定理证明即可.
解答 证明:∵E是∠AFB的平分线上一点,EC⊥FA,ED⊥FB,
∴EC=ED,
在△FDE和△FCE中,
$\left\{\begin{array}{l}{∠DFE=∠CFE}\\{∠FDE=∠FCE}\\{FE=FE}\end{array}\right.$,
∴△FDE≌△FCE,
∴FD=FC,又EC=ED,
∴FE是CD的垂直平分线.
点评 本题考查的是线段垂直平分线的判定、角平分线的性质、全等三角形的判定和性质,掌握到线段的两个端点的距离相等在线段的垂直平分线上是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -a2+b2 | B. | m2+2mn+2n2 | C. | x2+4xy+4y2 | D. | x2-$\frac{1}{2}$xy+$\frac{1}{16}$y2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\root{3}{x}$ | B. | $\sqrt{-x}$ | C. | -$\sqrt{x}$ | D. | ±$\root{3}{x}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com