精英家教网 > 初中数学 > 题目详情
4.二次函数y=ax2上的点B、C与x轴上的点A(-5,0),D(3,0)构成平行四边形ABCD,BC与y轴交于点E(0,6),则实数a=$\frac{3}{8}$.

分析 由于四边形ABCD是平行四边形,则BC=AD=8,根据抛物线的对称性知:C、B关于y轴对称,由此可得到C、B的坐标,代入抛物线的解析式中即可求出待定系数a的值.

解答 解:由题意知:OA=5,OD=3,
∴AD=OA+OD=8,
∴BC=AD=10;
∵E(0,6),
∵由对称性知:B(-4,6),C(4,6);
将C(4,6)代入y=ax2,得a=$\frac{6}{16}$=$\frac{3}{8}$;
故答案为:$\frac{3}{8}$.

点评 此题主要考查了抛物线的对称性、平行四边形的判定以及用待定系数法求二次函数解析式的方法;由抛物线的对称性得出点B、C的坐标是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.将直线y=$\frac{1}{2}$x+1向右平移4个单位长度后得到直线y=kx+b,则k,b对应的值是(  )
A.$\frac{1}{2}$,1B.-$\frac{1}{2}$,1C.-$\frac{1}{2}$,-1D.$\frac{1}{2}$,-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,⊙O与过点O的⊙P交于AB,D是⊙P的劣弧OB上一点,射线OD交⊙O于点E,交AB延长线于点C.如果AB=24,tan∠AOP=$\frac{2}{3}$.
(1)求⊙P的半径长;
(2)当△AOC为直角三角形时,求线段OD的长;
(3)设线段OD的长度为x,线段CE的长度为y,求y与x之间的函数关系式及其定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读理解:对于多项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于多项式x2+2ax-3a2,就不能直接用公式法了,我们可以根据多项式的特点,在x2+2ax-3a2中先加上一项a2,再减去a2这项,使整个式子的值不变.
解题过程如下:
x2+2ax-3a2=x2+2ax-3a2+a2-a2(第一步)
=x2+2ax+a2-a2-3a2(第二步)
=(x+a)2-(2a)2(第三步)
=(x+3a)(x-a)(第四步)
参照上述材料,回答下列问题:
(1)上述因式分解的过程,从第二步到第三步,用到了哪种因式分解的方法D
A.提公因式法  B.平方差公式法
C.完全平方公式法  D.没有因式分解
(2)从第三步到第四步用到的是哪种因式分解的方法:平方差公式法
(3)请参照上述方法把m2-6mn+8n2因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.在代数式2x-$\frac{2}{3}$,$\frac{5}{a+b}$,$\frac{x}{x-1}$,3+$\frac{y}{x}$,$\frac{a}{2}$-$\frac{b}{4}$,中分式的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,直线a与b平行,点A、B是直线a上两个定点,点CD在直线b上运动(点C在点D的左侧),AB=CD=4cm,a、b之间的距离为$\sqrt{3}$cm,连接AC、BD、BC,把△ABC沿BC折叠得△A1BC.
(1)当A1、D两点重合时,AC=4cm;
(2)当A1、D;两点不重合时:
①连接A1D,探究A1D与BC的位置关系,并说明理由;
②若以点A1、C、B、D为顶点的四边形是矩形吗?若能,请画出对应示意图,并求出AC的长;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,菱形ABCD的对角线AC、BD相交于点E,F是BA延长线上一点,连接EF,以EF为直径作⊙O.
(1)求证:AE∥FD;
(2)试判断AF和AB的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.关于x的方程(m+1)x|m-1|+mx-1=0是一元二次方程,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:E是∠AFB的平分线上一点,EC⊥FA,ED⊥FB,垂足分别为C、D.求证:FE是CD的垂直平分线.

查看答案和解析>>

同步练习册答案