【题目】一辆客车从甲地出发前往乙地,平均速度v(千米/小时)与所用时间t(小时)的函数关系如图所示,其中60≤v≤120.
(1)直接写出v与t的函数关系式;
(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.
①求两车的平均速度;
②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离.
【答案】(1)与的函数关系式为()(2)①客车和货车的平均速度分别为千米/小时和千米/小时.②甲地与加油站的距离为或千米
【解析】
试题(1)利用时间t与速度v成反比例可以得到反比例函数的解析式;
(2)①由客车的平均速度为每小时v千米,得到货车的平均速度为每小时(v-20)千米,根据一辆客车从甲地出发前往乙地,一辆货车同时从乙地出发前往甲地,3小时后两车相遇列出方程,解方程即可;
②分两种情况进行讨论:当A加油站在甲地和B加油站之间时;当B加油站在甲地和A加油站之间时;都可以根据甲、乙两地间有两个加油站A、B,它们相距200千米列出方程,解方程即可.
试题解析:(1)设函数关系式为v=,
∵t=5,v=120,
∴k=120×5=600,
∴v与t的函数关系式为v=(5≤t≤10);
(2)①依题意,得
3(v+v-20)=600,
解得v=110,
经检验,v=110符合题意.
当v=110时,v-20=90.
答:客车和货车的平均速度分别为110千米/小时和90千米/小时;
②当A加油站在甲地和B加油站之间时,
110t-(600-90t)=200,
解得t=4,此时110t=110×4=440;
当B加油站在甲地和A加油站之间时,
110t+200+90t=600,
解得t=2,此时110t=110×2=220.
答:甲地与B加油站的距离为220或440千米.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B,C向经过点A的直线EF作垂线,垂足为E,F.
(1)如图1,当EF与斜边BC不相交时,请证明EF=BE+CF;
(2)如图2,当EF与斜边BC相交时,其他条件不变,写出EF、BE、CF之间的数量关系,并说明理由;
(3)如图3,猜想EF、BE、CF之间又存在怎样的数量关系,写出猜想,不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与轴、轴分别交于、两点,点,射线交轴的负半轴于点.
(1)求点的坐标;
(2)点是坐标平面内不同于点的一点,且以、、为顶点的三角形与全等,请直接写出点的坐标;
(3)点是线段上一点,直线交于点,且的面积等于面积的一半,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,,平分,连接,,.
(1)求的度数:
(2)如图2,连接,交于,连接,求证:;
(3)如图3,在(2)的条件下,点为的中点,连接交于点,若,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,BE=2DE=2,CD=.
(1)求AB的长;
(2)求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦BC=4cm,点F是弦BC的中点,∠ABC=60°,若动点E以2cm/s的速度在线段AB上由A向B运动,连接EF,设运动时间为t(s),当△BEF是直角三角形时,t的值等于______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com