【题目】如图,平面直角坐标系中,A(0,a),B(b,0)且a、b满足|a+2b﹣6|+|a﹣2b+2|=0.E为线段AB上一动点,∠BED=∠OAB,BD⊥EC,垂足在EC的延长线上,试求:
(1)判断△OAB的形状,并说明理由;
(2)如图1,当点E与点A重合时,探究线段AC与BD的数量关系,并证明你的结论;
(3)如图2,当点E在线段AB(不与A、B重合)上运动时,试探究线段EC与BD的数量关系,证明你的结论.
【答案】(1)△OAB是等腰直角三角形;(2)AC=2BD,理由见解析;(3)EC=2BD,证明见解析
【解析】
(1)根据非负性得出a,b的值进而解答即可.
(2)延长BD与y轴交于点F,证明△ABD≌△AFD,可得BD=DF,再证明△AOC≌△BOF,可得AC=BF,即可得出结论;
(3)过点E作EN⊥x轴于点K,交BD的延长线于点N,证明△EBD≌△END,可得BD=DN,再证明△EKC≌△BKN,可得EC=BN,则结论得证.
解:(1)∵|a+2b﹣6|+|a﹣2b+2|=0,|a+2b﹣6|≥0,|a﹣2b+2|≥0
∴,
解得,
∴OA=OB,
又∵∠AOB=90°,
∴△OAB是等腰直角三角形.
(2)AC=2BD,理由如下:如图1,延长BD与y轴交于点F,
∵,
∴∠BAD=∠FAD
又∵BD⊥EC,∠ADB=∠ADF,
在△ADB和△ADF中,
,
∴△ABD≌△AFD(ASA),
∴BD=DF,
∵
∴
在△AOC和△BOF中
∴△AOC≌△BOF(ASA),
∴AC=BF,
∴AC=2BD;
(3)EC=2BD,证明如下:
如图2,过点E作EN⊥x轴于点K,交BD的延长线于点N,
∴EN∥y,
∴∠NEB=∠OAB,
∵∠BED=∠OAB,
∴∠NED=∠BED,
在△EBD和△END中,
,
∴△EBD≌△END(ASA),
∴BD=DN,
∴
在△EKC和△BKN中,
∴△EKC≌△BKN(ASA),
∴EC=BN,
∴EC=2BD.
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,点D在线段AB上,点E在CD的延长线上,连接AE,AE=AC,AF平分∠EAB,交CE于点F,连接BF.
(1)求证:EF=BF;
(2)猜想∠AFC的度数,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.
(1)求线段DE的长度;
(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;
(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B的坐标分别为A(1,0),B(3,0),探究:抛物线(m为常数)交x轴于点M、N两点.
(1)当m=2时.
①求出抛物线的顶点坐标及线段MN的长;
②抛物线上有一点P,使,求出点P的坐标;
(2)对于抛物线(m为常数).
①线段MN的长是否发生变化,请说明理由.
②若该抛物线与线段AB有公共点,请直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.
(1)求⊙O的半径长;
(2)求线段DG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分12分)抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点.
(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上一点,点G在BE上,连接DG并延长交AE于F,若∠FGE=45°.
(1)求证:BDBC=BGBE;
(2)求证:AG⊥BE;
(3)若E为AC的中点,求EF:FD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+8与x轴,y轴分别交于点A,B,直线y=x+1与直线AB交于点C,与y轴交于点D.
(1)求点C的坐标.
(2)求△BDC的面积.
(3)如图,P是y轴正半轴上的一点,Q是直线AB上的一点,连接PQ.
①若PQ∥x轴,且点A关于直线PQ的对称点A′恰好落在直线CD上,求PQ的长.
②若△BDC与△BPQ全等(点Q不与点C重合),请写出所有满足要求的点Q坐标(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com