精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为(小时),两车之间的阻离为(千米),图中的折线表示之间的函数关系,则图中的值为_______

【答案】6

【解析】

根据函数图象中的数据,可以先计算出普通列出的速度,然后根据两车4小时相遇,可以求得动车的速度,然后即可得到m的值.

解:B点处表示两车相遇,C点表示动车已经从甲地到达乙地,D点表示普通列出从乙地到达甲地,由图像可知:

普通列车的速度为:1800÷12=150(千米/小时),

运行4小时后,普通列车运行的路程为:4×150=600千米,

此时两车相遇,故在这4小时内,动车运行的路程为:1800-600=1200千米,

∴动车的速度为:1200÷4 =300(千米/小时),

m=1800÷300=6小时.

故答案为:6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数yx2,当axbmyn,则下列说法正确的是(  )

A.nm1时,ba有最小值

B.nm1时,ba有最大值

C.ba1时,nm无最小值

D.ba1时,nm有最大值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(81)B(03),反比例函数(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.

(1)k的值;

(2)BMN面积的最大值;

(3)MAAB,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】无锡市灵山胜境公司厂生产一种新的大佛纪念品,每件纪念品制造成本为18元,试销过程发现,每月销量万件与销售单价之间的关系可以近似地看作一次函数

写出公司每月的利润万元与销售单价之间函数解析式;

当销售单价为多少元时,公司每月能够获得最大利润?最大利润是多少?

根据工商部门规定,这种纪念品的销售单价不得高于32如果公司要获得每月不低于350万元的利润,那么制造这种纪念品每月的最低制造成本需要多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠MCN45°,点B在射线CM上,点A是射线CN上的一个动点(不与点C重合).点B关于CN的对称点为点D,连接ABADCD,点F在直线BC上,且满足AFAD.小明在探究图形运动的过程中发现AFAB:始终成立.

如图,当<∠BAC90°时.

求证:AFAB

用等式表示线段之间的数量关系,并证明;

90°<∠BAC135°时,直接用等式表示线段CFCDCA之间的数量关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,直线轴交于点,与轴交于点,点为线段的中点,将直线向右平移个单位长度,的对应点为,反比例函数的图象经过点,连接

1)当时,求的值;

2)如图②, 当反比例函数的图象经过点时, 求四边形的面积;

3)如图③,连接,当为等腰三角形时,求的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某年级共有150名女生,为了解该校女生实心球成绩(单位:米)和仰卧起坐(单位:个)的情况,从中随机抽取30名女生进行测试,获得了她们的相关成绩,并对数据进行整理、描述和分析,下面给出了部分信息.

.实心球成绩的频数分布表如下:

分组

62≤66

66≤70

70≤74

74≤78

78≤82

82≤86

频数

2

10

6

2

1

.实心球成绩在70≤74.这组的是:

7.0

7.0

7.0

7.1

7.1

7.1

7.2

7.2

7.3

7.3

.一分钟仰卧起坐成绩如图所示:

根据以上信息,回答下列问题:

1)①表中m的值为

②抽取学生一分钟仰卧起坐成绩的中位数为 个;

2)若实心球成绩达到72米及以上,成绩记为优秀,请估计全年级女生成绩达到优秀的人数.

3)该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下:

女生代码

A

B

C

D

E

F

G

H

实心球

81

77

75

75

73

72

70

65

一分钟仰卧起坐

*

42

47

*

47

52

*

49

其中有2名女生的一分钟仰卧起坐成绩未抄录完整,当老师说这8名女生恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点,点.将绕点顺时针旋转,得,点旋转后的对应点为.记旋转角为

1)如图①,当时,求点的坐标;

2)如图②,当时,求点的坐标;

3)连接,设线段的中点为,连接,求线段的长的最小值(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的直径,点上一点,连接,点关于的对称点恰好落在上.

1)求证:

2)过点的切线,交的延长线于点.如果,求的直径.

查看答案和解析>>

同步练习册答案