精英家教网 > 初中数学 > 题目详情

【题目】如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.

(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号)

【答案】
(1)解:在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,

∴DE= DC=2米


(2)解:过D作DF⊥AB,交AB于点F,

∵∠BFD=90°,∠BDF=45°,

∴∠BFD=45°,即△BFD为等腰直角三角形,

设BF=DF=x米,

∵四边形DEAF为矩形,

∴AF=DE=2米,即AB=(x+2)米,

在Rt△ABC中,∠ABC=30°,

∴BC= = = = 米,

BD= BF= x米,DC=4米,

∵∠DCE=30°,∠ACB=60°,

∴∠DCB=90°,

在Rt△BCD中,根据勾股定理得:2x2= +16,

解得:x=4+4

则AB=(6+4 )米.


【解析】解直角三角形的基本思路是把特殊角或已知角放在直角三角形中,利用三角函数得出边之间的关系,最后根据勾股定理列出方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,点,点P是直线上一点,且,则点P的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).
(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是
(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是
(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂有甲种原料130kg,乙种原料144kg.现用这两种原料生产出AB两种产品共30件.已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元.设生产A产品x(产品件数为整数件),根据以上信息解答下列问题:

1)生产AB两种产品的方案有哪几种;

2)写出(1)中利润最大的方案,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为奖励该校在南山区第二届学生技能大赛中表现突出的20名同学,派李老师为这些同学购买奖品,要求每人一件,李老师到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.

1)求笔记本和钢笔的单价分别为多少元?

2)售货员提示,购买笔记本没有优惠:买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买xx10)支钢笔,所需费用为y元,请你求出yx之间的函数关系式;

3)在(2)的条件下,如果买同一种奖品,请你帮忙计算说明,买哪种奖品费用更低.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x满足(x4) (x9)6,求(x4)2+(x9)2的值.

解:设x4ax9b,则(x4)(x9)ab6ab(x4)(x9)5

(x4)2+(x9)2a2+b2(ab)22ab522×637

请仿照上面的方法求解下面问题:

(1)x满足(x2)(x5)10,求(x2)2 + (x5)2的值

(2)已知正方形ABCD的边长为xEF分别是ADDC上的点,且AE1CF3,长方形EMFD的面积是15,分别以MFDF作正方形,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC角平分线AECF交于点PBD是△ABC的高,点HAC上,AFAH,下列结论:APC90°+ABCPH平分∠APCBCAB,连接BP,则∠DBP=∠BAC﹣∠BCAPHBD,则△ABC为等腰三角形,其中正确的结论有_____(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列文字,并完成证明;

已知:如图,∠1=∠4,∠2=∠3,求证:ABCD

证明:如图,延长CFAB于点G

∵∠2=∠3

BECF

∴∠1

又∠1=∠4

∴∠4

ABCD

查看答案和解析>>

同步练习册答案