精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.

(1)求抛物线的解析式;

(2)求点D的坐标;

(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.

【答案】解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3)。

设抛物线解析式为

将A(4,0)坐标代入得:0=4a+3,即

抛物线解析式为

(2)设直线AC解析式为(k≠0),

将A(4,0)与C(0,3)代入得:,解得:

直线AC解析式为

与抛物线解析式联立得:,解得:

点D坐标为(1,)。

(3)存在,分两种情况考虑:

当点M在x轴上方时,如图1所示:

四边形ADMN为平行四边形,DMAN,DM=AN,

由对称性得到M(3,),即DM=2,故AN=2,

N1(2,0),N2(6,0)。

当点M在x轴下方时,如图2所示:

过点D作DQx轴于点Q,过点M作MPx轴于点P,可得ADQ≌△NMP,

MP=DQ=,NP=AQ=3。

将yM=代入抛物线解析式得:

解得:xM=或xM=

xN=xM-3=

N3,0),N4,0)。

综上所述,满足条件的点N有四个:

N1(2,0),N2(6,0),N3,0),N4,0)。

【解析】

试题(1)由OA的长度确定出A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式,将A的坐标代入求出a的值,即可确定出抛物线解析式;。

(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,确定出直线AC解析式,与抛物线解析式联立即可求出D的坐标。

(3)存在,分两种情况考虑:如图所示,当四边形ADMN为平行四边形时,DMAN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,根据OA+AN求出ON的长,即可确定出N的坐标;当四边形ADM′N′为平行四边形,可得ADQ≌△NMP,MP=DQ=,NP=AQ=3,将y=代入得:,求出x的值,确定出OP的长,由OP+PN求出ON的长即可确定出N坐标。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=k和双曲线y=相交于点P,过P点作PA0垂直x轴,垂足为A0,x轴上的点A0、A1、A2、…A9的横坐标是连续的整数,过点A1、A2、…A9分别作x轴的垂线,与双曲线y=(x>0)及直线y=k分别交于点B1、B2、…B9,C1、C2…C9,则_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,按要求完成下面的问题:

(1)以图中的O为位似中心,ABC作位似变换且缩小到原来的一半,得到A'B'C',再把A'B'C'绕点B'逆时针旋转90°得到A″B'C″;

(2)求点AA'A″所经过的路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+b与反比例函数y=的图形交于Aa4)和B41)两点.

1)求bk的值;

2)在第一象限内,当一次函数y=x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;

3)将直线y=x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yx2+mx+n的图象经过点P(﹣31),对称轴是直线x=﹣1

1)求mn的值;

2x取什么值时,yx的增大而减小?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在矩形ABCD中,对角线ACBD相交于点O,过点CBD的平行线,过点DAC的平行线,两线交于点P

求证:四边形CODP是菱形.

AD6AC10,求四边形CODP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长均为1ABC的三个顶点均在小正方形的顶点上.

1)请在方格纸上建立平面直角坐标系,使点AC的坐标分别为(23)、(62),并写出点B的坐标;

2)以原点O为位似中心,在第一象限内将ABC放大,相似比为2,画出放大后的A'B'C'

3)直接写出BCAC的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自我省深化课程改革以来,某校开设了:A.利用影长求物体高度,B.制作视力表,C.设计遮阳棚,D.制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.

根据图中信息解决下列问题:

(1)本次共调查名学生,扇形统计图中B所对应的扇形的圆心角为度;

(2)补全条形统计图;

(3)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

查看答案和解析>>

同步练习册答案