【题目】如图,在边长为1个单位长度的小正方形组成的网格中,按要求完成下面的问题:
(1)以图中的O为位似中心,将△ABC作位似变换且缩小到原来的一半,得到△A'B'C',再把△A'B'C'绕点B'逆时针旋转90°得到△A″B'C″;
(2)求点A→A'→A″所经过的路线长.
【答案】(1)见解析;(2)2+
【解析】
(1)连接OA,在OA上截取OA′,使OA′=OA,同理作出B′、C′,顺次连接A′、B′、C′即可;过B′作A″B′⊥A′B′,使A″B′= A′B′,过B′作C″B′⊥B′C′,使C″B′= B′C′,连接A″、B'、C″即可;(2)根据平移性质可得AA′的距离,根据旋转的性质,利用弧长公式可求出弧A′A″的长,即可得答案.
(1) 如图所示:连接OA,在OA上截取OA′,使OA′=OA,同理作出B′、C′,顺次连接A′、B′、C′,△A'B'C'即为所求;过B′作A″B′⊥A′B′,使A″B′= A′B′,过B′作C″B′⊥B′C′,使C″B′= B′C′,连接A″、B'、C″,△A″B'C″即为所求.
(2)AA′=×4=2,
弧A′A″==
∴点A→A'→A″所经过的路线长为:2+.
科目:初中数学 来源: 题型:
【题目】(1)如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应
①请证明△ABC为等边三角形;
②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为 .
(2)如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;
(1)求反比例函数的表达式;
(2)根据图象直接写出﹣x>的解集;
(3)将直线l1:y=- x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用万元与年产量万件之间的函数图象是顶点为原点的抛物线的一部分如图所示;该产品的销售单价元件与年销售量万件之间的函数图象是如图所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元毛利润销售额生产费用
请写出y与x以及z与x之间的函数关系式;
求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD,P是AB的中点,Q是BC上一动点,△BPQ沿PQ折叠,点B落在点E处,延长QE交AD于M点,连接PM.
(1)求证:△PAM≌△PEM;
(2)当DQ⊥PQ时,将△CQD沿DQ折叠,点C落在线段EQ上点F处.
①求证:△PAM∽△DCQ;
②如果AM=1,sin∠DMF=,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是( )
A. AC⊥BCB. BE平分∠ABCC. BE∥CDD. ∠D=∠A
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春节前,安徽黄山脚下的小村庄的集市上,人山人海,还有人在摆“摸彩”游戏,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1~20号)和1只红球,规定:每次只摸一只球.摸前交1元钱且在1~20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元.
(1)你认为该游戏对“摸彩”者有利吗?说明你的理由.
(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com