【题目】(1)如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应
①请证明△ABC为等边三角形;
②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为 .
(2)如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的边长.
【答案】(1)①详见解析;②;(2).
【解析】
(1)由旋转的性质可得:AB=AC,∠BAC=60°,即可证△ABC为等边三角形;
(2)过点E作EG⊥直线a,延长GE交直线c于点H,可得GH=7,AD=2,由旋转的性质可得AD=AE=2,∠DAE=60°,可求GE=1,EH=6,由锐角三角函数可求CE=4,根据勾股定理可求等边△ABC的边AC的长;
(3)过点A作∠AHO=60°,交OQ于点G,交OP于点H,根据特殊三角函数值可求AH=4,通过证明△OBC≌△HCA,可求AH=OC=4,CE=1,根据勾股定理可求△ABC的边AC的长.
解:(1)∵将△AEC绕点A顺时针旋转60°得到△ADB,
∴AB=AC,∠BAC=60°,
∴△ABC为等边三角形.
(2)过点E作EG⊥直线a,延长GE交直线c于点H,
∵a∥b∥c,
∴EH⊥直线c,
∵直线a、c之间的距离为7,
∴GH=7
∵将△AEC绕点A顺时针旋转60°得到△ADB,
∴AD=AE,∠ADB=∠AEC=90°,∠DAE=60°,
∵直线a、b之间的距离为2,
∴AD=2=AE,
∵∠GAE=∠GAD﹣∠DAE=90°﹣60°=30°,
∴GE=AE=1,∠AEG=60°,
∴EH=7﹣1=6,
∵∠CEH=180°﹣∠AEC﹣∠AEG,
∴∠CEH=30°,
∴cos∠CEH=,
∴CE=4
在Rt△ACE中,AC===2,
故答案为:2
(3)过点A作∠AHO=60°,交OQ于点G,交OP于点H,
∵AE⊥OP,∠AHO=60°
∴sin∠AHO=
∴AH=4
∵△ABC是等边三角形,
∴AB=AC=BC,∠ACB=60°=∠POQ,
∵∠POQ+∠OBC+∠OCB=180°,∠ACB+∠OCB+∠ACH=180°,
∴∠ACH=∠OBC,且BC=AC,∠O=∠AHC=60°,
∴△OBC≌△HCA(AAS)
∴AH=OC=4,
∴CE=OE﹣OC=5﹣4=1,
在Rt△ACE中,AC===,
∴△ABC的边长为.
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像经过点,与轴交于点,、分别为轴、直线上的动点,当四边形的周长最小时,所在直线对应的函数表达式是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.
(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;
(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为( )
A. 2 B. ﹣2或﹣4 C. ﹣2 D. ﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘渔船位于港口A的北偏东60°方向,距离港口20海里的B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发,经过20分钟到达C处,求救援船的航行速度.(sin37°≈0.6,cos37°≈0.8,≈1.732,结果取整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=k和双曲线y=相交于点P,过P点作PA0垂直x轴,垂足为A0,x轴上的点A0、A1、A2、…A9的横坐标是连续的整数,过点A1、A2、…A9分别作x轴的垂线,与双曲线y=(x>0)及直线y=k分别交于点B1、B2、…B9,C1、C2、…C9,则=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,按要求完成下面的问题:
(1)以图中的O为位似中心,将△ABC作位似变换且缩小到原来的一半,得到△A'B'C',再把△A'B'C'绕点B'逆时针旋转90°得到△A″B'C″;
(2)求点A→A'→A″所经过的路线长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com