【题目】抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为( )
A. 2 B. ﹣2或﹣4 C. ﹣2 D. ﹣4
【答案】D
【解析】
根据题意和函数图象,利用二次函数的性质和等腰三角形的性质,可以求得b的值,本题得以解决.
解:∵抛物线y=ax2+bx+1,
∴x=0时,y=1,
∴点C的坐标为(0,1),
∴OC=1,
∵△OBC为等腰直角三角形,
∴OC=OB,
∴OB=1,
∴抛物线y=ax2+bx+1与x轴的一个交点为(1,0),
∴a+b+1=0,得a=﹣1﹣b,
设抛物线y=ax2+bx+1与x轴的另一个交点A为(x1,0),
∴x1×1= ,
∵△ABD为等腰直角三角形,
∴点D的纵坐标的绝对值是AB的一半,
∴,
∴ ,
解得,b=﹣2或b=﹣4,
当b=﹣2时,a=﹣1﹣(﹣2)=1,此时y=x2﹣2x+1=(x﹣1)2,与x轴只有一个交点,故不符合题意,
当b=﹣4时,a=﹣1﹣(﹣4)=3,此时y=3x2﹣4x+1,与x轴两个交点,符合题意,
故选:D.
科目:初中数学 来源: 题型:
【题目】如图所示,晚上小亮走在大街上,他发现当他站在大街上高度相等的两盏路灯AB和CD之间时,自己右边的影子NE的长为3m,左边的影子ME的长为1.5m,又知小亮的身高EF为1.80m,两盏路灯AC之间的距离为12m,点A、M、E、N、C在同一条直线上,问:路灯的高为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.
甲 | 乙 | 丙 | |
平均数 | 7.9 | 7.9 | 8.0 |
方差 | 3.29 | 0.49 | 1.8 |
根据以上图表信息,参赛选手应选( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:
(1)猜测y与x之间的函数关系,求出函数关系式并加以验证;
(2)当砝码的质量为24 g时,活动托盘B与点O的距离是多少?
(3)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列四个函数中,图象经过原点且对称轴在y轴左侧的二次函数是( )
A. y=x2+2x B. y=x2﹣2x C. y=2(x+1)2 D. y=2(x﹣1)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应
①请证明△ABC为等边三角形;
②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为 .
(2)如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,F在BD上,BC、AD相交于点E,且AB∥CD∥EF,
(1)图中有哪几对位似三角形,选其中一对加以证明;
(2)若AB=2,CD=3,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.根据图5中①所示的程序,得到了y与x的函数图象,如图5中②,若点M是
y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P、Q,连接OP、OQ,则以下结论:
①x<0时,y=
②△OPQ的面积为定值
③x>0时,y随x的增大而增大
④MQ=2PM
⑤∠POQ可以等于90°
其中正确结论是
A.①②④B.②④⑤C.③④⑤D.②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用万元与年产量万件之间的函数图象是顶点为原点的抛物线的一部分如图所示;该产品的销售单价元件与年销售量万件之间的函数图象是如图所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元毛利润销售额生产费用
请写出y与x以及z与x之间的函数关系式;
求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com