精英家教网 > 初中数学 > 题目详情

【题目】定义一种对正整数n的“F”运算:①当n为奇数时,Fn=3n+1;②当n为偶数时,Fn=(其中k是使Fn)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:

n=24,则第2019次“F”运算的结果是(

A.4B.1C.2018D.42018

【答案】B

【解析】

计算出n24时第1234567次运算的结果,找出规律再进行解答即可.

解:解:若n24
1次结果为3,第2次结果是10,第3次结果为5,第4次结果为16,第5次结果为1,第6次结果为4,第7次结果为1……
可以看出,从第5次开始,结果就只是14两个数轮流出现,
且当次数为偶数时,结果是4;次数是奇数时,结果是1
2019次是奇数,因此最后结果是1
故答案为:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2013年5月31日是第26个“世界无烟日”,校学生会书记小明同学就“戒烟方式”的了解程度对本校九年级学生进行了一次随机问卷调查,如图是他采集数据后绘制的两幅不完整的统计图(A:了解较多,B:不了解,C:了解一点,D:非常了解).请你根据图中提供的信息解答以下问题:

(1)在扇形统计图中的横线上填写缺失的数据,并把条形统计图补充完整.

(2)2013年该初中九年级共有学生400人,按此调查,可以估计2013年该初中九年级学生中对戒烟方式“了解较多”以上的学生约有多少人?

(3)在问卷调查中,选择“A”的是1名男生,1名女生,选择“D”的有4人且有2男2女.校学生会要从选择“A、D”的问卷中,分别抽一名学生参加活动,请你用列表法或树状图求出恰好是一名男生一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=mx2+2mx+m-1和直线y=mx+m-1,且m≠0

1)求抛物线的顶点坐标;

2)试说明抛物线与直线有两个交点;

3)已知点Tt0),且-1≤t≤1,过点Tx轴的垂线,与抛物线交于点P,与直线交于点Q,当0m≤3时,求线段PQ长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下表,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中仼意三个相邻格子中所填整数之和都相等.

5

4

……

1)可求得_______________

2)第2019个格子中的数为______

3)前2020个格子中所填整数之和为______

4)前个格子中所填整数之和是否可能为2020?若能,求出的值,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠ADC60°CD4cmPCD的中点.

1)在AC上找一点Q,使DQ+PQ的值最小(保留画图痕迹,不写画法,不必说理);

2)求出(1)中DQ+PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了(图1)、(图2)两幅均不完整的统计图.

请您根据图中提供的信息回答下列问题:

1)统计图中的a= b=

2)“D”对应扇形的圆心角为 度;

3)根据调查结果,请您估计该校1200名学生中最喜欢“数学史”校本课程的人数;

4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.

1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.

2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+3x轴交于A(﹣30),Bl0)两点,与y轴交于点C

1)求抛物线的解析式;

2)点P是抛物线上的动点,且满足SPAO2SPCO,求出P点的坐标;

3)连接BC,点Ex轴一动点,点F是抛物线上一动点,若以BCEF为顶点的四边形是平行四边形时,请直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC,点E,F在边BC上,BE=CF,点DAF的延长线上,AD=AC.

(1)求证:ABE≌△ACF;

(2)若∠BAE=30°,则∠ADC=   °.

查看答案和解析>>

同步练习册答案