【题目】观察下列各式:
=-1;
;
.
(1)根据前面各式的规律可得:
①.
②.
(2)请用上面的结论进行计算:
①(答案可含有幂的形式表示);
②若,求的值.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正比例函数与反比例函数的图象分别交于A、C两点,已知点B与点D关于坐标原点O成中心对称,且点B的坐标为其中.
四边形ABCD的是______填写四边形ABCD的形状
当点A的坐标为时,四边形ABCD是矩形,求m,n的值.
试探究:随着k与m的变化,四边形ABCD能不能成为菱形?若能,请直接写出k的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某乡村距城市50km,甲骑自行车从乡村出发进城,出发1小时30分后,乙骑摩托车也从乡村出发进城,结果比甲先到1小时,已知乙的速度是甲的2.5倍,求甲、乙两人的速度。
【答案】甲速12km/h,乙速30km/h.
【解析】试题分析:设甲的速度是则乙的速度是甲、乙所用时间分别为: 小时、小时;根据题意可得甲比乙多用2.5小时,从而可得关于的方程,解方程即可解答此题;注意,最后要结合题意验根.
试题解析:设甲的速度是则乙的速度是 根据题意列方程,得
整理,得
,
解得:
经检验, 是原方程的解.
则
答:甲的速度是12km/h,乙的速度是30km/h.
【题型】解答题
【结束】
24
【题目】已知求的值 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,矩形OABC的顶点B坐标为(12,5),点D在 CB边上从点C运动到点B,以AD为边作正方形ADEF,连BE、BF,在点D运动过程中,请探究以下问题:
(1)△ABF的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;
(2)若△BEF为等腰三角形,求此时正方形ADEF的边长;
(3)设E(x,y),直接写出y关于x的函数关系式及自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系内如图1摆放,A、C两点的横坐标都是5,BC∥x轴.已知B点坐标为(-3,m),AB交y轴于点D,且AC=BC.
(1) 填空:BC=_____;△ABC的面积为______;用m表示点A的坐标为______.
(2) 射线BO交直线AC于点Q,若△ABQ的面积为16,试求m的值
(3) 如图2,点D在y轴负半轴上,∠BAC的三等分线AP与∠BOD的角平分线OP交于点P,其中∠BAC=3∠BAP=45°.若∠P>2∠B,试求∠BOD的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与直线CF相交于点G.
(1)若点D在线段BC上,如图(1),判断:线段BC与线段CG的数量关系: ,位置关系: .
(2)如图(2),①若点D在线段BC的延长线上,(1)中判断线段BC与线段CG的数量关系与位置关系是否仍然成立,并说明理由;
②当G为CF中点,连接GE,若AB=,求线段GE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线射线,。是射线上一动点,过点作交射线于点,连结。作,交直线于点,平分。
(1)若点都在点的右侧。
①求的度数;
②若,求的度数。
(2)在点的运动过程中,是否存在这样的情形,使,若存在,求出的度数;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,真命题有( )①同旁内角互补;②长度为2、3、5的三条线段可以构成三角形;③平方根、立方根是它本身的数是0和1;④和﹣|﹣2|互为相反数;⑤4<<5;⑥在同一平面内,如果a∥b,a⊥c.那么b⊥c.
A.0个B.1个C.2个D.3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com