【题目】已知二次函数的图象如图,分析下列四个结论:①②③④其中正确的结论有
A.1个B.2个C.3个D.4个
【答案】C
【解析】
由抛物线图像可知,a<0,c>0,–1<<0,即b<0,故abc>0,①正确;
图像根x轴有两个交点,故b2-4ac>0,即4ac- b2<0,②正确;
当x=-2时,y<0,即4a-2b+c<0①,当x=1时,y<0,即a+b+c<0②,①+2②得2a+c<0,
∵a<0,
∴3a+c<0,故③错误;
当x=1时,y=a+b+c<0,当x=-1时,y=a-b+c>0
∴(a+b+c)(a+c-b)<0,即(a+c)2<b2,故④正确.
由抛物线图像可知,a<0,c>0,–1<<0,即b<0,故abc>0,①正确;
图像根x轴有两个交点,故b2-4ac>0,即4ac- b2<0,②正确;
当x=-2时,y<0,即4a-2b+c<0①,当x=1时,y<0,即a+b+c<0②,①+2②得2a+c<0,
∵a<0,
∴3a+c<0,故③错误;
当x=1时,y=a+b+c<0,当x=-1时,y=a-b+c>0
∴(a+b+c)(a+c-b)<0,即(a+c)2<b2,故④正确,故选C.
科目:初中数学 来源: 题型:
【题目】(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.
求证:AD·BC=AP·BP.
(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用:请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,画一条平行于BC的直线,使其将△ABC分成两部分,且所分三角形与梯形面积比为1:3;
(2)如图②,△ABC中AB=4,AC=3,BC=6,D是△ABC中AC边上的点,AD=2,过点D画一条直线l将△ABC分成两部分,l与△ABC另一边的交点为点P,使其所分的一个三角形与△ABC相似,并求出DP的长;
(3)如图③所示,在等腰△ABC中,CA=CB=10,AB=12.在△ABC中放入正方形DEMN和正方形EFPH,使得DE.EF在边AB上,点P.N分别在边CB.CA上,若较大正方形的边长为a,请用含a的代数式表示较小正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AB=" 3" cm,BC=" 4" cm.点P从点A出发,以1 cm/s的速度沿AB运动;同时,点Q从点B出发,以2 cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.
(1)试写出△PBQ的面积 S (cm2)与动点运动时间 t (s)之间的函数表达式;
(2)运动时间 t 为何值时,△PBQ的面积最大?最大值是多少?.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的网格中,每个小方格都是边长为1的正方形,B点的坐标为(-1,-1).
(1)把格点△ABC绕点B按逆时针方向旋转90°后得到△A1BC1,请画出△A1BC1,并写出点A1的坐标;
(2)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的相似之比为1:2,请在下面网格内画出△AB2C2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△A1B1C1.
(2)作△ABC关于坐标原点成中心对称的△A2B2C2.
(3)求B1的坐标 C2的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,线段AB的两个端点坐标分别为(﹣1,2),(2,3),把线段AB绕着原点O顺时针旋转90°得到线段A'B',点A的对应点为A'.
(1)画出线段A'B',并写出点A',B'的坐标;
(2)根据(1)中的变化规律,把OM绕着原点O顺时针旋转90°得到ON,则点M(m,n)的对应点N的坐标是( , ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=16cm,BC=8cm,一动点P从点C出发沿着CB方向以2cm/s的速度运动,另一动点Q从A出发沿着AC边以4cm/s的速度运动,P、Q两点同时出发,运动时间为t(s).
(1)若△PCQ的面积是△ABC面积的,求t的值?
(2)△PCQ的面积能否与四边形ABPQ面积相等?若能,求出t的值;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=135°,端点为A的射线l∥CB,点A绕射线l上的某点D旋转一周所形成的图形为F,点B在图形F上.
(1)利用尺规作图确定点D的位置;
(2)判断直线BC与图形F的公共点个数,并说明理由;
(3)若AD=2,∠C=15°,求直线AC被图形F所截得的线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com