精英家教网 > 初中数学 > 题目详情

【题目】(1)如图①,画一条平行于BC的直线,使其将△ABC分成两部分,且所分三角形与梯形面积比为1:3;

(2)如图②,△ABCAB=4AC=3BC=6D是△ABCAC边上的点,AD=2,过点D画一条直线l将△ABC分成两部分,l与△ABC另一边的交点为点P,使其所分的一个三角形与△ABC相似,并求出DP的长;

(3)如图③所示,在等腰△ABC中,CA=CB=10AB=12.在△ABC中放入正方形DEMN和正方形EFPH,使得DE.EF在边AB上,点P.N分别在边CB.CA上,若较大正方形的边长为a,请用含a的代数式表示较小正方形的边长.

【答案】1)见解析;(2)见解析,PD=4;(3)小正方形边长为.

【解析】

1)直线MN将三角形与梯形面积比为1:3,则△AMN与△ABC的面积比是1:4,则相似比是1:2,所以过ABAC的中点M,NBC的平行线即可;

2)先求到CD=1,再分DP// BCDP//AB,∠CDP=B, ADP=B四种情况讨论,可得到DP的长;

3)设正方形EFPH的边长为b,过点CCGAB于点G,证得△ADN∽△AGC,△BFP∽△BGC,得到,再根据AD+DE +EF +FB=AB=12,所以,从而得到小正方形边长为.

: (1)如图所示:直线MN即为所求,M.N分别为AB.AC中点

(2)AC=3, AD=2

CD=1

①当DP// BC时,△APD∽△ABC

,即

PD=4

②当DP//AB时,△CDP∽△CAB

,即

③当∠CDP=B时,△CDP∽△CBA

,即

④当∠ADP=B时,,则△ADP∽△ABC

,即

(3)设正方形EFPH的边长为b,过点CCGAB于点G

CA=CB=10 AB=12

AG=BG=6

RtAGC中,由勾股定理,得:

由题意得: ADN∽△AGC,△BFP∽△BGC

AD+DE +EF +FB=12

,即a+b=

综上所述,小正方形边长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为1GCD边上的一个动点(点GCD不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DEBG的延长线于点H.

1)求证:①△BCG≌△DCE②BH⊥DE.

2)当点G运动到什么位置时,BH垂直平分DE?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某茶叶经销商以每千克18元的价格购进一批宁波白茶鲜茶叶加工后出售, 已知加工过程中质量损耗了40%, 该商户对该茶叶试销期间, 销售单价不低于成本单价,且每千克获利不得高于成本单价的60%,经试销发现,每天的销售量y(千克)与销售单价x(元/千克)符合一次函数,且x=35时,y=45x=42时,y=38

1)求一次函数的表达式;

2)若该商户每天获得利润(不计加工费用)W元,试写出利润W与销售单价x之间的关系式;销售单价每千克定为多少元时,商户每天可获得最大利润,最大利润是多少元?

3)若该商户每天获得利润不低于225元,试确定销售单价x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.

(1)求证:DE=DF;

2)若∠ABC=30°C=45°DE=4,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】11·钦州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF4FC2,则DEF的度数是_

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:

1)本次接受调查的总人数是 人,并把条形统计图补充完整;

2)在扇形统计图中,步行的人数所占的百分比是 其他方式所在扇形的圆心角度数是

3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块材料的形状是锐角三角形ABC,边BC长120mm,高AD为80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.

(1)图中与ABC相似的三角形是哪一个,说明理由;

(2)这个正方形零件的边长为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如图,分析下列四个结论:①其中正确的结论有

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线Gymx2+2mx+m1m0)与y轴交于点C,抛物线G的顶点为D,直线:ymx+m1m0).

1)当m1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.

2)随着m取值的变化,判断点CD是否都在直线上并说明理由.

3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.

查看答案和解析>>

同步练习册答案