分析 (1)根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF;
(2)设BE=x,表示出CE=4-x,根据AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,得出AE即可;
(3)过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.
解答 解:(1)∵翻折,
∴∠AEF=∠CEF,
∵矩形ABCD的对边AD∥BC,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF;
(2)设BE=x,则CE=BC-BE=4-x,
∵沿EF翻折后点C与点A重合,
∴AE=CE=4-x,
在Rt△ABE中,AB2+BE2=AE2,
即32+x2=(4-x)2,
解得x=$\frac{7}{8}$,
∴AE=4-$\frac{7}{8}$=$\frac{25}{8}$,
(3)如图,![]()
过点E作EH⊥AD于H,则四边形ABEH是矩形,
∴EH=AB=3,
AH=BE=$\frac{7}{8}$,
∴FH=AF-AH=$\frac{25}{8}$-$\frac{7}{8}$=$\frac{9}{4}$,
在Rt△EFH中,EF=$\sqrt{E{H}^{2}+F{H}^{2}}$=$\sqrt{{3}^{2}+(\frac{9}{4})^{2}}$=$\frac{15}{4}$.
点评 本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.
科目:初中数学 来源: 题型:选择题
| A. | x>$\frac{1}{2}$ | B. | $\frac{1}{2}$≤x<5 | C. | $\frac{1}{2}$<x<7 | D. | $\frac{1}{2}$<x≤7 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com