精英家教网 > 初中数学 > 题目详情

【题目】如图所示,四边形ABCD中,ACBD于点OAO=CO=4BO=DO=3,点P为线段AC上的一个动点.过点P分别作PMAD于点M,作PNDC于点N. 连接PB,在点P运动过程中,PM+PN+PB的最小值等于_________ .

【答案】7.8

【解析】

在△ADO中,由勾股定理可求得AD=5,由ACBDAO=CO,可知DOAC的垂直平分线,由线段垂直平分线的性质可知AD=DC;利用面积法可证得PM+PN为定值,当PB最短时,PM+PN+PB有最小值,由垂线的性质可知当点P与点O重合时,OB有最小值.

ACBD于点OAO=CO=4BO=DO=3

∴在RtAOD中,

AD=

ACBD于点OAO=CO
CD=AD=5

如图所示:连接PD

,即

PM+PN=4.8

∴当PB最短时,PM+PN+PB有最小值,
∵由垂线段最短可知:当BPAC时,PB最短.
∴当点P与点O重合时,PM+PN+PB有最小,最小值=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了做好开学准备,某校共购买了20AB两种桶装消毒液,进行校园消杀,以备开学.已知A种消毒液300/桶,每桶可供2 0002的面积进行消杀,B种消毒液200/桶,每桶可供1 0002的面积进行消杀.

1)设购买了A种消毒液x桶,购买消毒液的费用为y元,写出yx之间的关系式,并指出自变量x的取值范围;

2)在现有资金不超过5 300元的情况下,求可消杀的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了考查学生的综合素质,某市决定:九年级毕业生统一参加中考实验操作考试,根据今年的实际情况,中考实验操作考试科目为:(物理)、(化学)、(生物),每科试题各为道,考生随机抽取其中道进行考试.小明和小丽是某校九年级学生,需参加实验考试.

1)小明抽到化学实验的概率为

2)若只从考试科目考虑,小明和小丽抽到不同科目的概率为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图像与坐标轴交于ABC三点,其中点A的坐标为(08),点B的坐标为(-40.

1)求该二次函数的表达式及点C的坐标;

2)点D的坐标为(04),点F为该二次函数在第一象限内图像上的动点,连接CDCF,以CDCF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.

①求S的最大值;

②在点F的运动过程中,当点E落在该二次函数图像上时,请直接写出此时S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E为边AB上一点,沿DE折叠得到,延长EFBC于点G,连接DG,过点EEHDEDG的延长线于点H,连接BH.

1)求证:GF=GC

2)探求BHAE数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示AB为O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.

求证:CEBF;

若BD=2,且EA:EB:EC=3:1:,求BCD的面积(注:根据圆的对称性可知OCAB).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件.

1)若商场每天要盈利1200元,每件应降价多少元?

2)设每件降价x元,每天盈利y元,每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,△ABC中,ABACBC6BE为中线,点DBC边上一点;BD2CDDFBE于点FEHBC于点H

(1)CH的长为_____

(2)BF·BE的值:

(3)如图2,连接FC,求证:∠EFC=∠ABC

查看答案和解析>>

同步练习册答案