【题目】如图,在平面直角坐标系中,二次函数的图像与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(-4,0).
(1)求该二次函数的表达式及点C的坐标;
(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图像上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.
①求S的最大值;
②在点F的运动过程中,当点E落在该二次函数图像上时,请直接写出此时S的值.
【答案】(1),;(2)①50②
【解析】
(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标
(2)①连结DF,OF,如图,设,利用S四边形OCFD,利用三角形面积公式得到S△CDF=,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;
②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即,然后把代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.
解:(1)把,代入得:
,
解得
所以抛物线的解析式为
当时,,解得,
所以点坐标为
(2)①连接,如图,设
∵
∴
当时,的面积有最大值,最大值为25
∵四边形为平行四边形
∴的最大值为50
②∵四边形为平行四边形
∴,
∵点向左平移8个单位,再向上平移4个单位得到点
∴点向左平移8个单位,再向上平移4个单位得到点,即
∵在抛物线上
∴,解得
当时,
∴此时.
科目:初中数学 来源: 题型:
【题目】如图1,△ABC和△DEC均为等腰三角形,且∠ACB=∠DCE=90°,连接BE,AD,两条线段所在的直线交于点P.
(1)线段BE与AD有何数量关系和位置关系,请说明理由.
(2)若已知BC=12,DC=5,△DEC绕点C顺时针旋转,
①如图2,当点D恰好落在BC的延长线上时,求AP的长;
②在旋转一周的过程中,设△PAB的面积为S,求S的最值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴交于,,与轴交于点.若点,同时从点出发,都以每秒个单位长度的速度分别沿,边运动,其中一点到达端点时,另一点也随之停止运动.
(1)直接写出二次函数的解析式;
(2)当,运动到秒时,将△APQ沿翻折,若点恰好落在抛物线上点处,求出点坐标;
(3)当点运动到点时,点停止运动,这时,在轴上是否存在点,使得以,,为顶点的三角形为等腰三角形?若存在,请直接写出 点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险. 半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形ABCD中,AC⊥BD于点O,AO=CO=4,BO=DO=3,点P为线段AC上的一个动点.过点P分别作PM⊥AD于点M,作PN⊥DC于点N. 连接PB,在点P运动过程中,PM+PN+PB的最小值等于_________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m,直角三角形较短边长n,且n=2m﹣4,大正方形的面积为S.
(1)求S关于m的函数关系式.
(2)若小正方形边长不大于3,当大正方形面积最大时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形组成的网格中,给出了格点△ABC(顶点为网格线的交点).
(1)将△ABC先向下平移3个单位长度,再向右平移4个单位长度后得到△A1B1C1.画出平移后的图形;
(2)将△ABC绕点A1顺时针旋转90°后得到△A2B2C2.画出旋转后的图形;
(3)借助网格,利用无刻度直尺画出△A1B1C1的中线A1D1(画图中要体现找关键点的方法).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com