【题目】如图,已知二次函数图象与x轴交于A,B两点,对称轴为直线x=2,下列结论:①abc>0; ②4a+b=0;③若点A坐标为(1,0),则线段AB=5; ④若点M(x1,y1)、N(x2,y2)在该函数图象上,且满足0<x1<1,2<x2<3,则y1<y2其中正确结论的序号为( )
A. ①,② B. ②,③ C. ③,④ D. ②,④
科目:初中数学 来源: 题型:
【题目】阅读型综合题
对于实数,我们定义一种新运算(其中,均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为,其中,叫做线性数的一个数对.若实数,都取正整数,我们称这样的线性数为正格线性数,这时的,叫做正格线性数的正格数对.
(1)若,则_________,_________;
(2)已知,.
①求字母的取值;
②若(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,经过点B的直线l(不与直线AB重合)与直线BC的夹角等于∠ABC,分别过点C、点A作直线l的垂线,垂足分别为点D、点E.
(1)如图1,当点E与点B重合时,若AE=4,判断以C点为圆心CD长为半径的圆C与直线AB的位置关系并说明理由;
(2)如图2,当点E在DB延长线上时,求证:AE=2CD;
(3)记直线CE与直线AB相交于点F,若,,CD=4,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于_______.
【答案】10或6
【解析】试题解析:根据题意画出图形,如图所示,
如图1所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根据勾股定理得:BD==8,CD==2,
此时BC=BD+CD=8+2=10;
如图2所示,AB=10,AC=2,AD=6,
在Rt△ABD和Rt△ACD中,
根据勾股定理得:BD==8,CD==2,
此时BC=BD-CD=8-2=6,
则BC的长为6或10.
【题型】填空题
【结束】
12
【题目】在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 ______ y2.(填“>”“<”或“=”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级开展演讲比赛,学校决定购买一些笔记本和钢笔作为奖品.现有甲、乙两家商店出售两种同样的笔记本和钢笔.他们的定价相同:笔记本定价为每本25元,钢笔每支定价6元,但是他们的优惠方案不同,甲店每买一本笔记本赠一支钢笔;乙店全部按定价的9折优惠.已知七年级需笔记本20本,钢笔x支(大于20支).问:
(1)在甲店购买需付款 元,在乙店购买需付款 元;
(2)若x=30,通过计算说明此时到哪家商店购买较为合算?
(3)当x=40时,请设计一种方案,使购买最省钱?算出此时需要付款多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线和直线外三点,按下列要求画图,填空:
(1)画射线;
(2)连接;
(3)延长至,使得;
(4)在直线上确定点,使得最小,请写出你作图的依据___________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于点B,且四边形BCOE是平行四边形。
(1)BC是⊙O的切线吗?若是,给出证明:若不是,请说明理由;
(2)若⊙O半径为1,求AD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数填入表示它所在的数集的大括号:
﹣2.4,3,21.08,0,﹣100,﹣(﹣2.28),,﹣|﹣4|,
正有理数集合:{ }
负有理数集合:{ }
整数集合:{ }
分数集合:{ }.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与x轴交于A、B(A点在B点的左侧)与y轴交于点C。
(1)如图1,连接AC、BC,求△ABC的面积。
(2)如图2:
①过点C作CR∥x轴交抛物线于点R,求点R的坐标;
②点P为第四象限抛物线上一点,连接PC,若∠BCP=2∠ABC时,求点P的坐标。
(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=,连接KB并延长交抛物线于点Q,求PQ的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com