精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AC=8,BC=6,AB=10,把△ABC沿AB边翻折成△ABC′,(在同一个平面内),则CC′的长为(  )
A、
5
24
B、
12
5
C、
24
5
D、
48
5
考点:翻折变换(折叠问题)
专题:
分析:首先证明∠ACB=90°,然后借助三角形的面积公式列出关于线段CO的关系式问题即可解决.
解答:解:由题意得:
AC=8,BC=6,AB=10,
CO⊥AB,CO=C′O;
∴AC2+BC2=AB2
∴∠ACB=90°;
由三角形的面积公式得:
1
2
AC•BC=
1
2
AB•CO

CO=
AC•BC
AB
=
48
10
=4.8

∴CC′=
24
5

故选C.
点评:该命题以三角形为载体,以对称变换为方法,以考查全等三角形的性质、勾股定理的逆定理等几何知识点为核心构造而成;灵活运用有关定理来分析、判断、求解或证明是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AB=AC=3,∠A=120°,求△ABC的外接圆的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,∠A=40°,BD、CE是角平分线,则∠BEC+∠BDC=(  )
A、130°B、140°
C、150°D、160°

查看答案和解析>>

科目:初中数学 来源: 题型:

下列各数-2,3,-(-0.75),-5.4,|-9|,-3,0,4中,属于整数的有m个,属于正数的有n个,则m,n的值为(  )
A、6,4B、5,5
C、4,3D、3,6

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一组数据-1,x,0,1,-2的平均数是0,这组数据的极差和标准差分别是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,线段AB与⊙O相切于点C,连结OA,OB,OB交⊙O于点D,已知OA=OB=6,∠A=30°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

将xn+3-xn+1因式分解,结果是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

48x4y3z2
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,OA⊥OB,垂足为O,P、Q分别是射线OA、OB上的两个动点,点C是线段PQ的中点,且PQ=4.则动点C运动形成的路径长是
 

查看答案和解析>>

同步练习册答案