【题目】已知关于x的一元二次方程 kx2+(2k+1)x+k+2=0.
(1)若该方程有两个不相等的实数根,求k的取值范围;
(2)若该方程的两根x1、x2满足=-3,求k的值.
科目:初中数学 来源: 题型:
【题目】某校为了解九年级学生的体育达标情况,随机抽取名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:
测试成绩(分) | |||||
人数(人) |
(1)该校九年级有名学生,估计体育测试成绩为分的学生人数;
(2)该校体育老师要对本次抽测成绩为分的甲、乙、丙、丁名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).
(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);
(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:
将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线y=(x﹣2m)2+3m﹣1(m是常数)与直线y=x+1有两个交点,且这两个交点分别在抛物线对称轴的两侧,则m的取值范围是( )
A.m<2B.m>2C.mD.m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.
(1)求证:AD=CD.
(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,判断直线DE与图形G的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解题时,最容易想到的方法未必是最简单的,你可以再想一想,尽量优化解法.
例题呈现
关于x的方程a(x+m)2+b=0的解是x1=1,x2=-2(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是 .
解法探讨
(1)小明的思路如图所示,请你按照他的思路解决这个问题;
小明的思路
第1步 把1、-2代入到第1个方程中求出m的值;
第2步 把m的值代入到第1个方程中求出的值;
第3步 解第2个方程.
(2)小红仔细观察两个方程,她把第2个方程a(x+m+2)2+b=0中的“x+2”看作第1个方程中的“x”,则“x+2”的值为 ,从而更简单地解决了问题.
策略运用
(3)小明和小红认真思考后发现,利用方程结构的特点,无需计算“根的判别式”就能轻松解决以下问题,请用他们说的方法完成解答.
已知方程 (a2-2b2)x2+(2b2-2c2)x+2c2-a2=0有两个相等的实数根,其中a、b、c是△ABC三边的长,判断△ABC的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;
(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;
(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是( )
A. ∠COM=∠CODB. 若OM=MN,则∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.
(1)求实数k的取值范围.
(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com