精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程 kx2+(2k1)xk20

1)若该方程有两个不相等的实数根,求k的取值范围;

2)若该方程的两根x1x2满足=-3,求k的值.

【答案】(1) kk0 2-5

【解析】

1)由x的一元二次方程kx2+2k+1x+k+2=0的两个实数根是x1x2,可得k≠00即可求出k的取值范围,
2)根据根与系数的关系及=-3,即可求出k的值.

1)∵方程有两个不相等的实数根,
k≠0=2k+12-4kk+2)>0
解得:kk≠0
k的取值范围:kk≠0
2)∵一元二次方程kx2+2k+1x+k+2=0的两个实数根是x1x2
x1+x2=-x1x2=
=-3
=-3
=-3
解得:k=-5
k的值是-5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了解九年级学生的体育达标情况,随机抽取名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:

测试成绩(分)

人数(人)

1)该校九年级有名学生,估计体育测试成绩为分的学生人数;

2)该校体育老师要对本次抽测成绩为分的甲、乙、丙、丁名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;T型尺(CD所在的直线垂直平分线段AB).

(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);

(2)如图2,小华说:我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:

将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积如果测得MN=10m,请你求出这个环形花坛的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线y=x﹣2m2+3m﹣1m是常数)与直线y=x+1有两个交点,且这两个交点分别在抛物线对称轴的两侧,则m的取值范围是( )

A.m2B.m2C.mD.m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面内,给定不在同一直线上的点ABC,如图所示.O到点ABC的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接ADCD.

(1)求证:AD=CD.

(2)过点DDEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.AD=CM,判断直线DE与图形G的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解题时,最容易想到的方法未必是最简单的,你可以再想一想,尽量优化解法.

例题呈现

关于x的方程a(xm)2b0的解是x11x2=-2amb均为常数,a0),则方程a(xm2)2b0的解是 

解法探讨

1)小明的思路如图所示,请你按照他的思路解决这个问题;

小明的思路

第1步 把1、-2代入到第1个方程中求出m的值;

第2步 把m的值代入到第1个方程中求出的值;

第3步 解第2个方程.

2)小红仔细观察两个方程,她把第2个方程a(xm2)2b0中的“x2”看作第1个方程中的“x”,则“x2”的值为  ,从而更简单地解决了问题.

策略运用

3)小明和小红认真思考后发现,利用方程结构的特点,无需计算“根的判别式”就能轻松解决以下问题,请用他们说的方法完成解答.

已知方程 (a22b2)x2+(2b22c2)x2c2a20有两个相等的实数根,其中abc是△ABC三边的长,判断△ABC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BECD分别是边ACAB上的中线,BECD相交于点OBE6,则OE_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD

2)分别以点CD为圆心,CD长为半径作弧,交于点MN

3)连接OMMN

根据以上作图过程及所作图形,下列结论中错误的是(

A. ∠COM=∠CODB. OM=MN,则∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+2k+1x+k2+1=0有两个不等实根x1x2

1)求实数k的取值范围

2)若方程两实根x1x2满足x1+x2=﹣x1x2k的值

查看答案和解析>>

同步练习册答案