【题目】如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.
(1)用画树状图或列表法求乙获胜的概率;
(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.
科目:初中数学 来源: 题型:
【题目】(1)圆中最长的弦是______.
(2)如图,AB是⊙O的弦,AB=8,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长度的最大值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)先化简,再求值:其中,a是方程x2+3x+1=0的根.
(2)已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和(5,0),试求该抛物线的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,把点先向右平移1个单位,再向上平移2个单位的平移称为一次斜平移.已知点A(1,0),点A经过n次斜平移得到点B,点M是线段AB的中点.
(1)当n=3时,点B的坐标是 ,点M的坐标是 ;
(2)如图1,当点M落在的图像上,求n的值;
(3)如图2,当点M落在直线上,点C是点B关于直线的对称点,BC与直线相交于点N.
①求证:△ABC是直角三角形
②当点C的坐标为(5,3)时,求MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC上,AB=3,BC=4
(1)求的值;
(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP
(Ⅰ)求的值;
(Ⅱ)判断CP与AF的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,以C(x0,y0)为圆心半径为r的圆的标准方程是(x﹣x0)2+(y﹣y0)2=r2.例如,在平面直角坐标系中,⊙C的圆心C(2,3),点M(3,5)是圆上一点,如图,过点C、点M分别作x轴、y轴的平行线,交于点H,在Rt△MCH中,由勾股定理可得:r2=MC2=CH2+MH2=1+4=5,则圆C的标准方程是(x﹣2)2+(y﹣3)2=5.那么以点(﹣3,4)为圆心,过点(﹣2,﹣1)的圆的标准方程是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3.
(1)试求出纸箱中蓝色球的个数;
(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:如图①,点A在直线MN上,点B在直线MN外,连结AB,过线段AB的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC,求证:BC⊥AD.
应用:如图②,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC、BE.若∠MAN=150°,则∠CBE的大小为______度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知关于的一元二次函数()的图象与轴相交于、两点(点在点的左侧),与轴交于点,且,顶点为.
⑴ 求出一元二次函数的关系式;
⑵ 点为线段上的一个动点,过点作轴的垂线,垂足为.若,的面积为,求关于的函数关系式,并写出的取值范围;
⑶ 探索线段上是否存在点,使得为直角三角形,如果存在,求出的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com