【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(1,5)和点B,与y轴相交于点C(0,6).
(1)求一次函数和反比例函数的解析式;
(2)现有一直线l与直线y=kx+b平行,且与反比例函数y=的图象在第一象限有且只有一个交点,求直线l的函数解析式.
【答案】(1) y=-x+6 y=; (2) y=-x+2
【解析】
(1)由点A(1,5)在y= 的图象上,得到5= ,解得:m=5,于是求得反比例函数的解析式为y= ,由于一次函数y=kx+b的图象经过A(1,5)和点C(0,6),列,解得,于是得到一次函数的解析式y=-x+6;
(2)设直线l的函数解析式为:y=-x+t,由于反比例函数y= 的图象在第一象限有且只有一个交点,联立方程组,化简得:x2-tx+5=0,得到△=t2-20=0,同时解得t=2 ,求得结果.
(1)∵点A(1,5)在y=的图象上,∴5=,解得:m=5,
∴反比例函数的解析式为:y=,
∵一次函数y=kx+b的图象经过A(1,5)和点C(0,6),
,解得:
∴一次函数的解析式为:y=-x+6;
(2)设直线l的函数解析式为:y=-x+t,
∵反比例函数y=的图象在第一象限有且只有一个交点,
,化简得:x2-tx+5=0,
∴△=t2-20=0,
解得:t=±2,
∵t=-2不合题意,
∴直线l的函数解析式为:y=-x+2
科目:初中数学 来源: 题型:
【题目】如图所示二次函数的图像与一次函数的图像交于、两点,点在点的右侧,直线分别与、轴交于、两点,其中.
(1)求、两点的横坐标;
(2)若是以为腰的等腰三角形,求的值;
(3)二次函数图像的对称轴与轴交于点,是否存在实数,使得,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,反比例函数()的图像与矩形两边AB、BC分别交于点D、点E,且.
(1)求点D的坐标和的值;
(2)求证:;
(3)若点是线段上的一个动点,是否存在点,使?若存在,求出此时点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在正方形ABCD中,点O是对角线AC的中点,过O点的射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P,下列结论:
①图形中全等的三角形只有三对; ②△EOF是等腰直角三角形;③正方形ABCD的面积等于四边形OEBF面积的4倍;④BE+BF=OA;⑤AE2+BE2=2OPOB.其中正确的个数有( )个.
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.
最喜爱的传统文化项目类型频数分布表
根据以上信息完成下列问题:
(1)直接写出频数分布表中a的值;
(2)补全频数分布直方图;
(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的顶点B、C在x轴的正半轴上,反个比例函数y= (k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n, ),过点E作直线l∥BD交y轴于点F,则点F的坐标是( )
A. (0,- )B. (0,- )
C. (0,-3)D. (0,- )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线C1:y=- x2+mx+m+
(1)①当m=1时,抛物线与x轴的交点坐标为_______;②当m=2时,抛物线与x轴的交点坐标为________;
(2)①无论m取何值,抛物线经过定点P________;②随着m的取值的变化,顶点M(x,y)随之变化,y是x的函数,记为函数C2 , 则函数C2的关系式为:________;
(3)如图,若抛物线C1与x轴仅有一个公共点时,①直接写出此时抛物线C1的函数关系式;②请在图中画出顶点M满足的函数C2的大致图象,在x轴上任取一点C,过点C作平行于y轴的直线l分别交C1、C2于点A、B,若△PAB为等腰直角三角形,求点C的坐标;
(4)二次函数的图象C2与y轴交于点N,连接PN,若二次函数的图象C1与线段PN有两个交点,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点②方程ax2+bx+c=0(a≠0)的解为x=0或x=4,③a﹣b+c<0;④当0<x<4时,ax2﹣bx+c<0;⑤当x<2时,y随x增大而增大,其中结论正确的个数( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数,(k为常数,k≠1).
(1)若点A(1,2)在这个函数的图象上,求k的值;
(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;
(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com