【题目】如图所示二次函数的图像与一次函数的图像交于、两点,点在点的右侧,直线分别与、轴交于、两点,其中.
(1)求、两点的横坐标;
(2)若是以为腰的等腰三角形,求的值;
(3)二次函数图像的对称轴与轴交于点,是否存在实数,使得,若存在,求出的值;若不存在,说明理由.
【答案】(1)点、横坐标分别为,;(2)的值为或;(3)存在,的值为或,见解析.
【解析】
(1)根据二次函数与一次函数相交,可列出一元二次方程,求得、坐标.
(2)根据是以为腰的等腰三角形,则和,可列出含有的方程并求解.
(3)分在轴上方和在轴下方两种情况,作辅助线,应用勾股定理等公式进行求解.
(1)二次函数的图像与一次函数的图像交于、两点,
联立,
解得:或.
点在点的右侧,
点、横坐标分别为,.
(2)由(1)得点坐标为,点坐标为,
故,,.
若是以为腰的等腰三角形
①当时,,解得:,.
②当时,,解得:,(舍)
综上所述:的值为或或.
(3)存在.
①点在轴上方时,则,即时,
过点作点,在上作点,使,
,轴,
轴
,
,
,
轴,,
,.
.
又,,
,,
,,,,
,,,
,
解得:,(舍)
②点在轴下方时,则即时,
过点作直线于点,在的延长线上作点,使.
,轴,
轴,.
,
.
轴,.
,
,
.
又,.
.
,,,,
,
,
,
解得:,(舍).
综上所述:存作实数,使得,的值为或.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;
(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;
(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是( )
A. ∠COM=∠CODB. 若OM=MN,则∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的布袋中,有个红球,个白球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出个球,摸到红球的概率是________;
(2)搅匀后先从中任意摸出个球(不放回),再从余下的球中任意摸出个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,点,以线段为直径作圆,圆心为,直线交于点,连接.
(1)求证:直线是的切线;
(2)点为轴上任意一动点,连接交于点,连接:
①当时,求所有点的坐标 (直接写出);
②求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.
(1)求证:四边形DECO是矩形;
(2)连接AE交BD于点F,当∠ADB=30°,DE=2时,求AF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的例题及点拨,并解决问题:
例题:如图①,在等边中,是边上一点(不含端点),是的外角的平分线上一点,且.求证:.
点拨:如图②,作,与的延长线相交于点,得等边,连接.易证:,可得;又,则,可得;由,进一步可得又因为,所以,即:.
问题:如图③,在正方形中,是边上一点(不含端点),是正方形的外角的平分线上一点,且.求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(1,5)和点B,与y轴相交于点C(0,6).
(1)求一次函数和反比例函数的解析式;
(2)现有一直线l与直线y=kx+b平行,且与反比例函数y=的图象在第一象限有且只有一个交点,求直线l的函数解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com