【题目】一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.
(发现猜想)(1)如图①,已知∠AOB=70°,∠AOD=100°,OC为∠BOD的角平分线,则∠AOC的度数为 ;.
(探索归纳)(2)如图①,∠AOB=m,∠AOD=n,OC为∠BOD的角平分线. 猜想∠AOC的度数(用含m、n的代数式表示),并说明理由.
(问题解决)(3)如图②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射线OB绕点O以每秒20°逆时针旋转,射线OC绕点O以每秒10°顺时针旋转,射线OD绕点O每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?
【答案】(1)85°;(2)∠AOC=;理由见解析;(3)经过,,4秒时,其中一条射线是另外两条射线夹角的平分线.
【解析】
(1)根据∠AOD、∠AOB、∠BOD之间的关系,求出∠BOD的度数,然后根据角平分线的性质算出∠BOC的度数,再计算∠AOC即可解决问题.
(2)根据∠AOD、∠AOB、∠BOD之间的关系,用m、n表示出∠BOD的度数,然后根据角平分线的性质用m、n的代数式表示出∠BOC,最后再表示出∠AOC即可解决问题.
(3)根据各角之间存在的数量关系,设经过x秒时,分别用x将∠DOA、∠COA、∠BOA表示出来,然后分四类情况讨论,根据角平分线的性质列出方程,解决即可.
(1)85°;
(2)∵∠AOB=m,∠AOD=n
∴∠BOD=n-m
∵OC为∠BOD的角平分线
∴∠BOC=
∴∠AOC=+m=
(3)设经过的时间为x秒,
则∠DOA=120°-30x;∠COA=90°-10x;∠BOA=20°+20x;
①当在x=之前,OC为OB,OD的角平分线;30-20x=70-30x,x1=4(舍);
②当x在和2之间,OD为OC,OB的角平分线;-30+20x=100-50x,x2=;
③当x在2和之间,OB为OC,OD的角平分线;70-30x=-100+50x,x3=;
④当x在和4之间,OC为OB,OD的角平分线;-70+30x=-30+20x,x4=4.
答:经过,,4秒时,其中一条射线是另外两条射线夹角的平分线.
科目:初中数学 来源: 题型:
【题目】某市为了美化环境,计划在一定的时间内完成绿化面积万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加,而且要提前年完成任务,经测算要完成新的计划,平均每年的绿化面积必须比原计划多万亩,求原计划平均每年的绿化面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且△A1B1C1与△ABC关于原点O成中心对称,C点坐标为(-2,1)。
(1)请直接写出A1的坐标 ;并画出△A1B1C1.
(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对称点P'(a+2,b﹣6),请画出平移后的△A2B2C2.
(3)若△A1B1C1和△A2B2C2关于某一点成中心对称,则对称中心的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是Rt△ABC斜边BC上的高.
(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);
(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;
(3)在(2)的条件下,连结DEDH.求证:ED⊥HD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九年级数学兴趣小组,在广场上测量位于正东方向的某建筑物AC的高度,如图所示,他先在点B测得该建筑物顶点A的仰角为30°,然后向正东方向前行62米,到达D点,再测得该建筑物顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求该建筑物AC的高度(结果精确的1米,参考数值:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年10月17日是我国第五个“扶贫日”,某校学生会干部对学生倡导的“扶贫”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图,(图中信息不完整),已知A.B两组捐款人数的比为1:5.
被调查的捐款人数分组统计表:
组别 | 捐款额x/元 | 人数 |
A | 1≤x<10 | a |
B | 10≤x<20 | 100 |
C | 20≤x<30 | ______ |
D | 30≤x<40 | ______ |
E | 40≤x | ______ |
请结合以上信息解答下列问题:
(1)求a的值和参与调查的总人数;
(2)补全“被调查的捐款人数分组统计图1”并计算扇形B的圆心角度数;
(3)已知该校有学生2200人,请估计捐款数不少于30元的学生人数有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习有理数得乘法后,老师给同学们这样一道题目:
计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:
聪聪:原式=﹣×5=﹣=﹣249;
明明:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)对于以上两种解法,你认为谁的解法较好?
(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;
(3)用你认为最合适的方法计算:29×(﹣8)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=kx+k﹣2经过点(m,n+1)和(m+1,2n+3),且﹣2<k<0,则n的取值范围是( )
A. ﹣2<n<0B. ﹣4<n<﹣2C. ﹣4<n<0D. 0<n<﹣2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com