精英家教网 > 初中数学 > 题目详情

【题目】某中学九年级数学兴趣小组,在广场上测量位于正东方向的某建筑物AC的高度,如图所示,他先在点B测得该建筑物顶点A的仰角为30°,然后向正东方向前行62米,到达D点,再测得该建筑物顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求该建筑物AC的高度(结果精确的1米,参考数值:

【答案】该建筑物的高度约为53

【解析】分析:首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角ADC中,利用三角函数即可求解.

详解:∵∠ADC=∠B+∠BAD

∴∠BAD=∠ADC-B=60°-30°=30°,

∴∠B=∠BAD

AD=BD=62(米).

在直角△ACD中,

AC=ADsin∠ADC

=62×

=

≈31×1.7

=52.7

≈53(米).

答:该建筑物的高度约为53米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点AB在数轴上对应的数分别为ab,则AB两点间的距离表示为AB|ab|.根据以上知识解题:

1)点A在数轴上表示3,点B在数轴上表示2,那么AB_______

2)在数轴上表示数a的点与﹣2的距离是3,那么a______

3)如果数轴上表示数a的点位于﹣42之间,那么|a+4|+|a2|______

4)对于任何有理数x|x3|+|x6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数分别填入相应的大括号里(将各数用逗号分开):

-80.2750,-1.04--3),-|2|.

1)正数集合:{ …}

2)分数集合:{ …}

3)负整数集合:{ …}

4)非负数集合:{ …}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为ABCD四个等级.请根据两幅统计图中的信息回答下列问题:

1)本次抽样调查共抽取了多少名学生?

2)求测试结果为C等级的学生数,并补全条形图;

3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?

4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC=90°OABC外接圆,点D是圆上一点,点DB分别在AC两侧,且BD=BC,连接ADBDODCD,延长CB到点P,使∠APB=DCB

1)求证:AP为⊙O的切线;

2)若⊙O的半径为1,当OED是直角三角形时,求ABC的面积;

3)若BOEDOEAED的面积分别为abc,试探究abc之间的等量关系式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.

(发现猜想)(1)如图①,已知∠AOB70°,∠AOD100°OC为∠BOD的角平分线,则∠AOC的度数为 .

(探索归纳)(2)如图①,∠AOBm,∠AODnOC为∠BOD的角平分线. 猜想∠AOC的度数(用含mn的代数式表示),并说明理由.

(问题解决)(3)如图②,若∠AOB20°,∠AOC90°,∠AOD120°.若射线OB绕点O以每秒20°逆时针旋转,射线OC绕点O以每秒10°顺时针旋转,射线OD绕点O每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是正方形的边上的动点,是边延长线上的一点,且,设.

1)当是等边三角形时,求的长;

2)求的函数解析式,并写出它的定义域;

3)把沿着直线翻折,点落在点处,试探索:能否为等腰三角形?如果能,请求出的长;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地2016年为做好“精准扶贫”,投人资金1280万元用于异地安置,并规划投入资金逐年增加,预计2018年投人的资金将比2016年多1600万元.

(1)从2016年到2018年,该地投人异地安置资金的年平均增长率为多少?

(2)在2016年异地安置的具体实施中,该地另外投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,试求2016年该地至少有多少户享受到优先搬迁租房奖励.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位汇报高峰时段的车流量情况如下:

甲同学说:二环路车流量为每小时10000.”

乙同学说:“四环路比三环路车流量每小时多2000.”

丙同学说:三环路车流量的3倍与四环路车流量的差是二环路车流量的2.”

请你根据他们提供的信息,求出高峰时段三环路、四环路的车流量各是多少?

查看答案和解析>>

同步练习册答案