20£®¶¨Òå·ûºÅmin{a£¬b}µÄº¬ÒåΪ£ºµ±a¡Ýbʱ£¬min{a£¬b}=b£»µ±a£¼bʱ£¬min{a£¬b}=a£®È磺min{1£¬-2}=-2£¬min{-1£¬2}=-1£®
£¨1£©Çómin{x2-1£¬-2}£»
£¨2£©ÒÑÖªmin{x2-2x+k£¬-3}=-3£¬ÇóʵÊýkµÄȡֵ·¶Î§£»
£¨3£©ÒÑÖªµ±-2¡Üx¡Ü3ʱ£¬min{x2-2x-15£¬m£¨x+1£©}=x2-2x-15£®Ö±½Óд³öʵÊýmµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©±È½Ïx2-1Óë-2µÄ´óС£¬µÃµ½´ð°¸£»
£¨2£©°Ñx2-2x+k»¯Îª£¨x-1£©2+k-1µÄÐÎʽ£¬È·¶¨kµÄȡֵ·¶Î§£»
£¨3£©¸ù¾Ýµ±-2¡Üx¡Ü3ʱ£¬y=x2-2x-15µÄֵСÓÚy=m£¨x+1£©µÄÖµ£¬½â´ð¼´¿É£®

½â´ð ½â£º£¨1£©¡ßx2¡Ý0£¬
¡àx2-1¡Ý-1£¬
¡àx2-1£¾-2£®
¡àmin{x2-1£¬-2}=-2£¬
£¨2£©¡ßx2-2x+k=£¨x-1£©2+k-1£¬
¡à£¨x-1£©2+k-1¡Ýk-1£®
¡ßmin{x2-2x+k£¬-3}=-3£¬
¡àk-1¡Ý-3£®
¡àk¡Ý-2£¬
£¨3£©¶ÔÓÚy=x2-2x-15£¬µ±x=-2ʱ£¬y=-7£¬
µ±x=3ʱ£¬y=-12£¬
ÓÉÌâÒâ¿ÉÖªÅ×ÎïÏßy=x2-2x-15ÓëÖ±Ïßy=m£¨x+1£©µÄ½»µã×ø±êΪ£¨-2£¬-7£©£¬£¨3£¬-12£©£¬
ËùÒÔmµÄ·¶Î§ÊÇ£º-3¡Üm¡Ü7£®

µãÆÀ ±¾Ì⿼²éµÄÊÇÓë¶þ´Îº¯ÊýºÍÒ»´Îº¯ÊýÓйصÄж¨Ò壬¸ù¾ÝÌâÒâÀí½âж¨ÒåµÄ¼ÆË㹫ʽÊǽâÌâµÄ¹Ø¼ü£¬×¢Ò⣺һ´Îº¯ÊýºÍ¶þ´Îº¯ÊýµÄÐÔÖʵÄÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼ÆË㣺4¡Ácos60¡ã+$\sqrt{16}$-£¨$\frac{1}{3}$£©-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨x-1-$\frac{8}{x+1}$£©¡Â$\frac{x+3}{x+1}$£¬²¢È¡Ò»¸öÄãϲ»¶µÄÊý´úÈëÇóÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®¼ÆËã$\sqrt{8}+\sqrt{27}-\sqrt{2}+\sqrt{3}$µÄ½á¹ûΪ$\sqrt{2}$+4$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{2}{a+1}+\frac{{{a^2}-4a+4}}{{{a^2}-1}}¡Â\frac{a-2}{a-1}$£¬ÆäÖÐ$a=\sqrt{2}-1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬AD¡ÍBCÓÚµãD£¬¹ýµãC×÷¡ÑOÓë±ßABÏàÇÐÓÚµãE£¬½»BCÓÚµãF£¬CEΪ¡ÑOµÄÖ±¾¶£®
£¨1£©ÇóÖ¤£ºOD¡ÍCE£»
£¨2£©ÈôDF=1£¬DC=3£¬ÇóAEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÎÒ¹úº£¼à´¬Ñ²º½±à¶Ó´ÓµöÓ㵺£¨Aµã³ö·¢£©£¬Ñر±Æ«¶«53¡ãµÄ·½Ïòº½ÐУ¬º½ÐÐÒ»¶Îʱ¼äµ½´ïÒ»¸öµÆËþ£¨Bµã£©ºó£¬ÓÖÑØ×ű±Æ«Î÷22¡ã·½Ïòº½ÐÐÁË10º£Àïµ½´ï»ÆÎ²Ó죨Cµã£©´¦£¬Õâʱ´ÓµöÓ㵺²âµÃѲº½±à¶ÓÔÚµöÓ㵺±±Æ«¶«23¡ã·½ÏòÉÏ£¬ÇóµöÓ㵺Óë»ÆÎ²ÓìÖ®¼äµÄ¾àÀ루²Î¿¼Êý¾Ý£º$\sqrt{2}¡Ö$1.4£¬$\sqrt{3}$¡Ö1.7£¬½á¹û±£ÁôÕûÊý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼×¡¢ÒÒÁ½×¨Âôµêij¶Îʱ¼äÄÚÏúÊÛÊÕÈëy£¨Ôª£©ÓëÌìÊýx£¨Ì죩µÄº¯ÊýͼÏóÈçͼËùʾ£®ÔÚÕâÆÚ¼äÒÒרÂôµêÍ£Òµ×°ÐÞÒ»¶Îʱ¼ä£¬ÖØÐ¿ªÒµºó£¬ÒÒרÂôµêµÄÈÕ¾ùÏúÊÛÊÕÈëÊÇÔ­À´µÄ2±¶£®Çë½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©Ö±½Óд³ö¼×רÂôµêÏúÊÛÊÕÈëy£¨Ôª£©ÓëÌìÊýx£¨Ì죩֮¼äµÄº¯Êý¹ØÏµÊ½y=600x£»
£¨2£©ÇóͼÖÐaµÄÖµ£»
£¨3£©¶àÉÙÌìºó¼×¡¢ÒÒÁ½µêµÄÏúÊÛ×ÜÊÕÈë¸ÕºÃ´ïµ½3ÍòÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬Ò»Ö»ËÉÊóÔÚÊ÷¸ÉµÄA´¦£¬´ÓµØÃæC²âµÃACµÄ¾àÀëÊÇ6m£¬Ñö½ÇÊÇ43¡ã£¬1sºó£¬ËÉÊóÌøµ½B´¦£¬´Ëʱ²âµÃBCµÄ¾àÀëÊÇ6.13m£¬Ñö½ÇΪ45.54¡ã£¬½â´ðÏÂÁÐÎÊÌâ
£¨1£©Bµã¾àÀëµØÃæÓжàÔ¶£¨¾«È·µ½0.01m£©
£¨2£©ËÉÊó´ÓAµãÌøµ½BµãµÄƽ¾ùËÙ¶ÈÊǶàÉÙ£¨¾«È·µ½0.1m/s£©
£¨²Î¿¼Êý¾Ý£ºsin45.54¡ã¡Ö0.714£¬sin43¡ã¡Ö0.682£¬tan43¡ã¡Ö0.933£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸