精英家教网 > 初中数学 > 题目详情
3.一场募捐晚会共募得善款21.756亿元人民币,这些人民币用科学记数法表示(保留三个有效数字)为(  )
A.2.18×109B.21.8×108C.2.176×109D.21.76×108

分析 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于359800有6位,所以可以确定n=6-1=5.
有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.
用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.

解答 解:21.756亿元=21.756×108元=2.1756×10×108=2.1756×109元≈2.18×109元.
故选A.

点评 用科学记数法表示绝对值较大的数,一般形式为a×10n,其中1≤|a|<10,n等于原数的整数位数减1;从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字;去掉“亿”字相当于把原数扩大了108倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.若a-1没有倒数,则a=1,若$\frac{5-|a|}{7}$=0,则a=±5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.当k为何值时,关于x,y的多项式x2+2kxy-3y2-6xy-y中不含xy项?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=$\frac{2}{3}$x2+bx+c经过点B,且顶点在直线x=$\frac{5}{2}$上.
(1)求抛物线对应的函数关系式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,连结BD,已知在对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知:抛物线y=x2+bx+c与x轴的两个交点分别为A(1,0)和B(3,0),与y轴交于点C.
(1)求此二次函数的解析式;
(2)写出点C的坐标(0,3),顶点D的座标为(2,-1);
(3)将直线CD沿y轴向下平移3个单位长度,求平移后直线m的解析式;
(4)在直线m上是否存在一点E,使得以点E、A、B、C为顶点的四边形是梯形?如果存在,请直接写出所有满足条件的E点的坐标(-1,2)或(-1.5,3)(不必写出过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知反比例函数y=$\frac{k}{x}$的图象经过点A(-3,-2).
(1)求反比例函数的解析式;
(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.若关于x的一元一次不等式组$\left\{\begin{array}{l}{3-2x>1}\\{x-a>0}\end{array}\right.$恰有3个整数解,那么a的取值范围是(  )
A.-2<a<1B.-3<a≤-2C.-3≤a<-2D.-3<a<-2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.将直线y=-2x-3向上平移4个单位长度得到的直线的解析式为y=-2x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.要使$\sqrt{a-5}$+$\sqrt{5-a}$有意义,则a的值为5.

查看答案和解析>>

同步练习册答案