精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为(
A.2﹣
B.
C. ﹣1
D.1

【答案】C
【解析】解:如图,连接BB′, ∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
∴AB=AB′,∠BAB′=60°,
∴△ABB′是等边三角形,
∴AB=BB′,
在△ABC′和△B′BC′中,

∴△ABC′≌△B′BC′(SSS),
∴∠ABC′=∠B′BC′,
延长BC′交AB′于D,
则BD⊥AB′,
∵∠C=90°,AC=BC=
∴AB= =2,
∴BD=2× =
C′D= ×2=1,
∴BC′=BD﹣C′D= ﹣1.
故选:C.

【考点精析】认真审题,首先需要了解旋转的性质(①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知两直线L1y=k1x+b1L2y=k2x+b2,若L1L2,则有k1k2=﹣1

1)应用:已知y=2x+1y=kx﹣1垂直,求k

2)直线经过A23),且与y=x+3垂直,求解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥AB于B,PB交AC于E,若AB=4,BE=2,则PE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.

(1)求证:△AEM≌△CFN;

(2)求证:四边形BMDN是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,对任意一个正整数n都可以进行这样的分解:n=pq(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称pq是n的最佳分解,并规定:F(n)=,例如12可以分解为112,26或34,因为12-1>6-2>4-3,所以34是最佳分解,所以F(n)=

(1)如果一个正整数是另外一个正整数b的平方,我们称正整数a是完全平方数,求证:对任意一个完全平方数m,总有F(m)=1

(2)如果一个两位正整数t,t=10x+y (1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们就称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是直线AB上的一点,C是直线AB外的一点,OD是∠AOC的平分线,

OE是∠COB的平分线.

(1)已知∠1=23°,求∠2的度数;

(2)无论点C的位置如何改变,图中是否存在一个角,它的大小始终不变(∠AOB除外)?如果存在,求出这个角的度数;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】合并下列多项式中的同类项:

(1)3x2+4x﹣2x2﹣x+x2﹣3x﹣1;

(2)﹣a2b+2a2b;

(3)a3﹣a2b+ab2+a2b﹣2ab2+b3

(4)2a2b+3a2b﹣a2b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,三角形ABC三个顶点ABC的坐标分别为A12),B43),C31).

1)三角形A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标.

2)求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角ABC中,点OAC边上的一个动点,过O作直线MNBC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,下列结论中正确的是(  )

OE=OFCE=CF③若CE=12,CF=5,则OC的长为6;④当AO=CO时,四边形AECF是矩形.

A. ①② B. ①④ C. ①③④ D. ②③④

查看答案和解析>>

同步练习册答案