精英家教网 > 初中数学 > 题目详情

【题目】中,AE垂直于AB边上的中线CD,交BC于点E.

1)求证:

2)若,求边ACBC的长.

【答案】(1)详见解析;(2)

【解析】

(1)先说明△ACB∽△ECA,然后运用相似三角形的性质即可解答;

(2)RtABC的中线,运用勾股定理求出AB,再说明△DFC∽△ECA运用相似三角形的性质即可解答。

解:(1)因为CDAB边上的中线,

所以CDDB

ABC=∠DCB=∠CAE

ACB=∠ECA

所以△ACB∽△ECA

所以

所以

2)因为CDRtABC的中线,

所以CD=AD=BD.

所以AB=6.

所以

BC中点F,连结DF,则DF//AC,∠DFC=∠ECA

所以△DFC∽△ECA

所以

所以

故可解得

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图1,ACBDCE均为等腰直角三角形,ACB=90°,B,C,D在一条直线上.

填空:线段AD,BE之间的关系为 .

(2)拓展探究

如图2,ACBDCE均为等腰直角三角形,ACB=DCE=90°,请判断AD,BE的关系,并说明理由.

(3)解决问题

如图3,线段PA=3,B是线段PA外一点,PB=5,连接AB,AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于点,对称轴为直线,平行于轴的直线与抛物线交于两点,点在对称轴左侧,.

I.求此抛物线的解析式;

Ⅱ.已知在轴上存在一点,使得的周长最小,求点的坐标;

Ⅲ.若过点的直线的面积分成2:3两部分,试求直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠A=90°AB=8cmAC=6cm,若动点DB出发,沿线段BA运动到点A为止(不考虑DBA重合的情况),运动速度为2cm/s,过点DDEBCAC于点E,连接BE,设动点D运动的时间为xs),AE的长为ycm).

1)求y关于x的函数表达式,并写出自变量x的取值范围;

2)当x为何值时,△BDE的面积S有最大值?最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在正方形ABCD中,AB3E是边BC上一个动点(点E不与点B,点C重合),连接AE,点HBC延长线上一点.过点BBFAE,交AE于点G,交DC于点F

1)求证:AEBF

2)过点EEMAE,交∠DCH的平分线于点M,连接FM,判断四边形BFME的形状,并说明理由;

3)在(2)的条件下,∠EMC的正弦值为,求四边形AGFD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A11)在抛物线yx2+2m+1xn1

1)求mn的关系式;

2)若该抛物线的顶点在x轴上,求出它的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数(k为常数,k0)的图象与过原点的O的直线相交于AB两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于CD两点,连接BM分别交x轴,y轴于点EF.现有以下四个结论:①ODMOCA的面积相等;②若BMAM于点M,则MBA30°;③若M点的横坐标为1OAM为等边三角形,则;④若,则MD2MA.其中正确的结论的序号是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:

组别

个数段

频数

频率

1

5

0.1

2

21

0.42

3

4

1)表中的数      

2)估算该九年级排球垫球测试结果小于10的人数;

3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax2+bx1x轴的交点为A(10)B(20),且与y轴交于C.

(1)求该抛物线的表达式;

(2)C关于x轴的对称点为C1M是线段BC1上的一个动点(不与BC1重合)MEx轴,MFy轴,垂足分别为EF,当点M在什么位置时,矩形MFOE的面积最大?说明理由.

(3)已知点P是直线yx+1上的动点,点Q为抛物线上的动点,当以CC1PQ为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.

查看答案和解析>>

同步练习册答案