精英家教网 > 初中数学 > 题目详情
13.如图,在Rt△ABC中,∠C=90°,以点C为圆心作⊙C,与AB切于点D,过点A、B分别作⊙C的切线AF、BE,切点为F、E点.求证:AF∥BE.

分析 根据切线长定理得到∠1=∠2,∠3=∠4,则利用互余得∠2+∠3=90°,所以∠1+∠2+∠3+∠4=180°,于是可根据平行线的判定得到结论.

解答 证明:∵AF、AD是⊙C的切线,
∴∠1=∠2,
∵BE、BD是⊙C的切线,
∴∠3=∠4,
又∵∠C=90°,
∴∠2+∠3=90°,
∴∠1+∠2+∠3+∠4=180°,
即∠FAB+∠EBA=180°,
∴AF∥BE.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理和平行线的判定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,△ABC是边长为2$\sqrt{3}$的等边三角形,已知G是边AB上的一个动点(G点不与A,B点重合),且GE∥AC,GF∥BC,若AG=x,S△GEF=y.

(1)求y与x的函数关系式,并写出函数定义域;
(2)点G在运动过程总,能否使△GEF成为直角三角形?若能,请求出AG长度;若不能,请说明理由;
(3)点G在运动过程中,能否使四边形GFEB构成平行四边形?若能,直接写出S△GEF的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.在-$\sqrt{2}$,$\frac{22}{7}$,$\sqrt{1.21}$,π,$\sqrt{9}$,2.121121112…(两个2 之间的1逐次加1个)中,无理数有-$\sqrt{2}$,π,2.121121112….

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.用20cm长的绳子围成一个矩形,如果这个矩形的一边长为x cm,面积是S cm2,则S与x的函数关系式为(  )
A.S=x(20-x)B.S=x(20-2x)C.S=10x-x2D.S=2x(10-x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.教材第6页有一道题目:如图,矩形花圃一面靠墙(墙足够长),另外三面所围的栅栏的总长度是19m.
(1)若花圃的面积是24m2,求AB边的长度是多少?
(2)若要围成的花圃面积最大,求这个最大值;
(3)若只利用这些栅栏将上题中这个矩形花圃分隔成两个有一边相邻的矩形花圃,且围成的总面积最大,求两个矩形花圃公共边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时15海里的速度航行,甲沿南偏西75°方向以每小时15$\sqrt{2}$海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.甲船追赶乙船的速度为多少海里/小时?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知△ABC,按如下步骤作图:
①分别以A,C为圆心,大于$\frac{1}{2}$AC的长为半径画弧,两弧交于P,Q两点;
②作直线PQ,分别交AB,AC于点E,D,连接CE;
③过C作CF∥AB交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)当∠ACF=32°,∠B=46°时,求∠BCE的度数;
(3)求证:四边形AECF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为12,sinB=$\frac{1}{4}$,则线段AC的长度是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.某校150名学生参加数学竞赛,平均分为75分,其中及格学生平均得85分,不及格学生平均得55分,则不及格学生人数为(  )
A.40B.48C.50D.100

查看答案和解析>>

同步练习册答案