【题目】为了迎接体育理化加试,九(2)班同学到某体育用品商店采购训练用球,已知购买3个A品牌足球和2个B品牌足球需付210元;购买2个A品牌足球和1个B品牌足球需付费130元.(优惠措施见海报)
(1)求A,B两品牌足球的单价各为多少元;
(2)为享受优惠,同学们决定购买一次性购买足球60个,若要求A品牌足球的数量不低于B品牌足球数量的3倍,请你设计一种付费最少的方案,并说明理由.
【答案】(1)A品牌足球的单价为50元,B品牌足球的单价为30元;(2)购买A品牌足球45个,B品牌足球15个花费最少,最少费用为2250元,理由见解析.
【解析】
(1)设A品牌足球的单价为x元,B品牌足球的单价为y元,根据购买3个A品牌足球和2个B品牌足球需付210元;购买2个A品牌足球和1个B品牌足球需付费130元列方程组求解可得;
(2)设购买A品牌足球为a个,则购买B品牌足球为(60﹣a)个,根据A品牌足球的数量不低于B品牌足球数量的3倍列一元一次不等式求解,然后根据题意表示出购买总费用W与a的函数关系式,然后根据一次函数图像性质分析最值.
解:(1)设A品牌足球的单价为x元,B品牌足球的单价为y元,根据题意得:,解得,答:A品牌足球的单价为50元,B品牌足球的单价为30元;
(2)设购买A品牌足球为a个,则购买B品牌足球为(60﹣a)个,根据题意得:
,解得,故A品牌足球可享8折,B品牌足球原价;
设购买A,B两品牌足球的总费用为W元,
则W=0.8×50a+30(60﹣a)=10a+1800,
∵k=10>0,∴W随x的增大而增大,
∴当a=45时,花费最少,最少费用为:10×45+1800=2250(元).
答:购买A品牌足球45个,B品牌足球15个花费最少,最少费用为2250元.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把一块含30°角的三角板的直角顶点放在反比例函数y=-(x<0)的图象上的点C处,另两个顶点分别落在原点O和x轴的负半轴上的点A处,且∠CAO=30°,则AC边与该函数图象的另一交点D的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC为等边三角形,点O为AB边上一点,且BO=2AO=4,将△ABC绕点O逆时针旋转60°得△DEF,则图中阴影部分的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年3月24日,工信部发布《关于推动加快发展的通知》,全力推进网络建设、应用推广、技术发展和安全保障.工信部提出,要培育新型消费模式,加快用户向迁移,推动“医疗健康”创新发展,实施“工业互联网”512工程,促进“车联网”协同发展,构建应用生态系统.现“网络”已成为一个热门词汇,某校为了解九年级学生对“网络”的了解程度,对九年级学生行了一次测试(一共10道题答对1道得1分,满分10分),测试结束后随机抽取了部分学生的成绩整理分析,绘制出如图所示的两幅不完整的统计图,请根据图中信息解答下列问题:
(1)请补全条形统计图,扇形统计图中 __;
(2)所调查学生成绩的众数是_ ____分,平均数是_ 分;
(3)若该校九年级学生有人,请估计得分不少于分的有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=ax2+bx+c(a≠0)的顶点坐标A(﹣1,3),与x轴的一个交点B(﹣4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0;②abc<0;③抛物线与x轴的另一个交点坐标是(3,0);④方程ax2+bx+c﹣3=0有两个相等的实数根;⑤当﹣4<x<﹣1时,则y2<y1.
其中正确的是( )
A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,C是半圆O上一点(不与点A、B重合),D是的中点,DE⊥AB于点E,过点C作半圆O的切线,交ED的延长线于点F.
(1)求证:∠FCD=∠ADE;
(2)填空:
①当∠FCD的度数为 时,四边形OADC是菱形;
②若AB=2,当CF∥AB时,DF的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为满足市场需求,某超市在中秋节来临前夕,购进一种品牌月饼,每盒进价是40元,超市规定每盒售价不得少于45元,根据以往销售经验发现:当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)请写出每天的销售利润(元)与每盒涨价(元)之间的函数关系式及自变量的取值范围;
(2)当每盒涨价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果超市想要每天获得不低于6000元的利润,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com