精英家教网 > 初中数学 > 题目详情

【题目】贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).

【答案】第二次施救时云梯与水平线的夹角∠BAD约为71°.

【解析】试题分析:延长AD交BC所在直线于点E.解Rt△ACE,得出CE=AEtan60°=15米,解Rt△ABE,由tan∠BAE=,得出∠BAE≈71°.

试题解析:延长AD交BC所在直线于点E,

由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,

在Rt△ACE中,tan∠CAE=

∴CE=AEtan60°=15米,

在Rt△ABE中,tan∠BAE=

∴∠BAE≈71°,

答:第二次施救时云梯与水平线的夹角∠BAD约为71°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2019101日在天安门广场举行的国庆庆祝活动中,参加人数约为150000人,用科学记数法表示这个人数是_____人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线,直线与直线分别相交于C、D两点.

(1)如图a,有一动点P在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中,是否始终具有∠3+∠1=∠2这一关系,为什么?

(2)如图b,当动点P线段CD之外运动(不与C、D两点重合),问上述结论是否成立?若不成立,试写出新的结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△ABC中,∠B是∠A3倍,∠C比∠A30°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:

(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;

(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;

(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,An在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,Bn,以线段AnBn为边向左作正方形AnBnCnDn,如果这组抛物线中的某一条经过点Dn,求此时满足条件的正方形AnBnCnDn的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知三个数的比是237,这三个数的和是144,则这三个数最大数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.

解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.

AB、AD、DC之间的等量关系为   

(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.

(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAC=90°BD⊥DECE⊥DE,添加下列条件后仍不能使△ABD≌△CAE的条件是(  )

A. AD=AE B. AB=AC C. BD=AE D. AD=CE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCDCEBE的交点为E,现作如下操作:

第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1

第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2

第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3……

n次操作,分别作∠ABEn1和∠DCEn1的平分线,交点为En.

(1)如图①,求证:∠EBC

(2)如图②,求证:∠E1E

(3)猜想:若∠Enb°,求∠BEC的度数.

查看答案和解析>>

同步练习册答案