【题目】如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=6,DB=10,求BE的长.
【答案】(1)见解析;(2).
【解析】试题分析:
(1)由矩形的性质可得:AB=DC,∠A=∠C=90°;由折叠的性质可知,BF=AB,∠F=∠A=90°,由此可得:BF=DC,∠F=∠C=90°,结合∠BEF=∠DEC可由“AAS”证得:△DCE≌△BFE;
(2)在Rt△BDC中由勾股定理可得:BC=;由(1)中结论△DCE≌△BFE可得:DE=BE,设BE= ,则DE= ,CE=BC-BE= ,在Rt△DEC中,由勾股定理建立关于的方程,解方程即可求得BE的长.
试题解析:
(1)∵四边形ABCD是矩形,
∴AB=DC,∠A=∠C=90°,
∵△DBF是由△DBA折叠得到的,
∴BF=AB,∠F=∠A=90°,
∴BF=DC,∠F=∠C,
又∵∠BEF=∠DEC,
∴△DCE≌△BFE;
(2)∵在Rt△BDC中,∠C=90°,CD=6,DB=10,
∴由勾股定理得:BC=,
∵△DCE≌△BFE,
∴BE=DE ,
设BE=DE=x,则EC=8-x,
在Rt△CDE中,CE2+CD2=DE2,即(8-x)2+62=x2.
解得: .
∴BE=.
科目:初中数学 来源: 题型:
【题目】若10m=5,10n=3,则102m+3n= .
【答案】675.
【解析】102m+3n=102m103n=(10m)2(10n)3=5233=675,
故答案为:675.
点睛:此题考查了幂的乘方与积的乘方, 同底数幂的乘法. 首先根据同底数幂的乘法法则,可得102m+3n=102m×103n,然后根据幂的乘方的运算方法,可得102m×103n=(10m)2×(10n)3,最后把10m=5,10n=2代入化简后的算式,求出102m+3n的值是多少即可.
【题型】填空题
【结束】
18
【题目】计算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
(3) (-)2 016×161 008;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校“综合实践课程”结合当地传统文化开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如下不完整分布表及条形统计图 .
根据以上信息完成下列问题:
(1)直接写出分布表中a的值;
(2)补全条形统计图;
(3)若全校共有学生1000名,估计该校最喜爱围棋的学生大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标,并画出△A1B1C1;
(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;
(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标,并画出△A3B3C3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为
A.120元
B.100元
C.80元
D.60元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:
①b2﹣4ac>0;
②2a+b<0;
③4a﹣2b+c=0;
④a:b:c=﹣1:2:3.
其中正确的个数是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠C=90°
(1)利用尺规作∠B 的角平分线交AC于D,以BD为直径作⊙O交AB于E(保留作图痕迹,不写作法);
(2)综合应用:在(1)的条件下,连接DE
①求证:CD=DE;
②若sinA=,AC=6,求AD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com