精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,CD在⊙O上,且BC=CD,过点CCEAD,交AD延长线于E,交AB延长线于F点.若AB=4ED,则cosABC的值是( )

A. B. C. D.

【答案】A

【解析】

先证明△CDE∽△ABC得到对应边成比例,由AB=4DEBC=CD得到BC=AB,从而求出cosABC=

连接OCAC

CEAD
∴∠EAC+ECA=90°
OC=OA
∴∠OCA=OAC
又∵BC=CD
∴∠OAC=EAC
∴∠OCA=EAC
∴∠ECA+OCA=90°
EF是⊙O的切线,
∴∠ECD=EAC
又∵BC=CD
∴∠EAC=BAC
∴∠ECD=BAC
又∵AB是直径,
∴∠BCA=90°
在△BAC和△DCE中,
BCA=DEC=90°
ECD=CAB
∴△CDE∽△ABC

又∵AB=4DECD=BC

BC=AB
cosABC= =
故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线与抛物线相交于AB两点,且点A1,-4)为抛物线的顶点,点Bx轴上。

1)求抛物线的解析式;

2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;

3)若点Qy轴上一点,且△ABQ为直角三角形,求点Q的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在ABC中,AD是高,矩形PQMN的顶点PN分别在ABAC上,QM在边BC上.若BC8cmAD6cm

1PN2PQ,求矩形PQMN的周长

2)当PN为多少时矩形PQMN的面积最大,最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点BCE在同一水平直线上).已知AB=80mDE=20m,求障碍物BC两点间的距离.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.

1)求证:∠A=AEB.

2)连接OE,交CD于点FOECD,求证:ABE是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数yax22ax1(a是常数,a≠0),下列结论正确的是( )

A. a1,函数图象过点(1,1)

B. a=-2,函数图象与x轴没有交点

C. a>0,则当x≥1,yx的增大而减小

D. a<0,则当x≤1,yx的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学兴趣小组的活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图①位置放置,ADAE在同一直线上,ABAG在同一直线上.

⑴小明发现DGBE,请你帮他说明理由.

⑵如图②,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价01元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元.

(1)设销售单价为每千克a,每天平均获利为y,请解答下列问题:

①每天平均销售量可以表示为_____;

②每天平均销售额可以表示为_____;

③每天平均获利可以表示为y=______;

(2) 该经营户要想每天盈利200元,应将每千克小型西瓜的售价降多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.

(1)求sinB的值;

(2)如果CD=,求BE的值.

查看答案和解析>>

同步练习册答案