分析 (1)由正方形和折叠的性质得出AF=AB,∠B=∠AFG=90°,由HL即可证明Rt△ABG≌Rt△AFG;
(2)由全等三角形的性质得出BG=FG,∠AGB=∠AGF,设正方形的边长为6,BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2,由勾股定理求出x=3,得出BG=GF=CG,由等腰三角形的性质和外角关系得出∠AGB=∠FCG,即可证出平行线.
解答 证明:(1)∵四边形ABCD是正方形,
∴AB=AD=DC=6,∠B=D=90°,
∵CD=3DE,
∴DE=2,
∵△ADE沿AE折叠得到△AFE,
∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,
∴AF=AB,
在Rt△ABG和Rt△AFG中,$\left\{\begin{array}{l}{AG=AG}\\{AB=AF}\end{array}\right.$,
∴Rt△ABG≌Rt△AFG(HL);
(2)∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF,
设正方形ABCD的边长为6,BG=x,则CG=BC-BG=6-x,GE=GF+EF=BG+DE=x+2,
在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,
∵CG=6-x,CE=4,EG=x+2
∴(6-x)2+42=(x+2)2
解得:x=3,
∴BG=GF=CG=3,
∴∠CFG=∠FCG,
∵∠BGF=∠CFG+∠FCG,
又∵∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF,
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG,
∴AG∥CF.
点评 本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 40人 | B. | 32人 | C. | 20人 | D. | 12人 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com