精英家教网 > 初中数学 > 题目详情

【题目】现代互联网技术的广泛应用,加速了快递行业的发展,据调查,某家小型快递公司,今年3月与5月完成投递的快件总数分别为10万件和14.4万件,现假定该公司每月投递的快件总数的增长率相同.

(1)求该快递公司投递快件总数的月平均增长率?

(2)如果该公司平均每名快件投递业务员每月最多可投递快件0.6万件,那么该公司现有的21名快件投递业务员能否完成今年6月的快件投递任务?如果不能,请问至少需要增加几名业务员?

【答案】(1)(2)至少需要增加8名业务员.

【解析】

(1)设该快递公司投递总件数的月平均增长率为x,根据“今年1月份与3月份完成投递的快递总件数分别为10万件和14.4万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;

2)首先求出今年四月份的快递投递任务,再求出26名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年4月份的快递任务,进而求出至少需要增加业务员的人数.

(1)解:设月平均增长率为,依题得:

解得(舍去)

月平均增长率为.

(2)(万件)

(万件)

不能完成今年6月的快件投递服务.

至少需要增加8名业务员.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线x轴交于AB两点(点A在点B左侧),与y轴交于点D,点C为抛物线的顶点,过BC两点作直线BC,抛物线上的一点F的横坐标是,过点F作直线FG//BCx轴于点G.

1)点P是直线BC上方抛物线上的一动点,连接PG与直线BC交于点E,连接EFPF,当的面积最大时,在x轴上有一点R,使PR+CR的值最小,求出点R的坐标,并直接写出PR+CR的最小值;

2)如图2,连接AD,作AD的垂直平分线与x轴交于点K,平移抛物线,使抛物线的顶点C在射线BC上移动,平移的距离是t,平移后抛物线上点A,点C的对应点分别为点A′,点C′,连接A′C′A′KC′KA′C′K是否能为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形中,交边于点

1)当点恰好重合时(如图1),求的长;

2)问:是否可能使都相似?若能,请求出此时的长;若不能,请说明理由(如图2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.

1)求出yx的函数关系式

2问销售该商品第几天时,当天销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用一段长为的篱笆围成一个一边靠墙的矩形花圃,墙长.设长为,矩形的面积为

1)写出的函数关系式;当长为多少米时,所围成的花圃面积最大?最大值是多少?

2)当花圃的面积为时,长为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC的中点为O,点GH在对角线AC上,AGCH,直线GH绕点O逆时针旋转α角,与边ABCD分别相交于点EF(点E不与点AB重合).

1)求证:四边形EHFG是平行四边形;

2)若∠α90°AB9AD3,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,已知,点的延长线上,点的延长线上,有下列结论:①;②;③;④若,则点的距离为.则其中正确结论的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的顶点为D﹣12),与x轴的一个交点A在点(﹣30)和(﹣20)之间,其部分图象如图,则以下结论:①b2﹣4ac0②当x﹣1时,yx增大而减小;③a+b+c0④若方程ax2+bx+c﹣m=0没有实数根,则m2; 3a+c0.其中正确结论的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步练习册答案