【题目】如图1,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,,,过点的直线交矩形的边于点,且点不与点、重合,过点作,交轴于点,交轴于点.
(1)若为等腰直角三角形.
①求直线的函数解析式;
②在轴上另有一点的坐标为,请在直线和轴上分别找一点、,使 的周长最小,并求出此时点的坐标和周长的最小值.
(2)如图2,过点作交轴于点,若以、、、为顶点的四边形是平行四边形,求直线的解析式.
【答案】(1)①直线解析式, ②N(0,),周长的最小值为;(2).
【解析】
(1)①利用矩形的性质确定A、B、C点的坐标,再利用等腰三角的性质确定,所以,确定P点的坐标,再根据A点的坐标确定确定直线AP的函数表达式. ②作G点关于y轴对称点G'(-2,0),作点G关于直线AP对称点G'(3,1)
连接G'G'交y轴于N,交直线AP于M,此时ΔGMN周长的最小.(2)过P作PM⊥AD于M,先根据等腰三角形三线合一的性质证明DM=MA ,再根据角角边定理证明ΔODE≌ΔMDP,根据全等三角形的性质求出点P、D的坐标,代入直线解析式得k=2,b=-2,所以直线PE的解析式为y=2x-2.
(1)①∵矩形,
∴,
∵为等腰直角三角形
∴
∵
∴
∵
∴
∴
∴
设直线解析式,过点,点
∴ ∴
∴直线解析式
②作点关于轴对称点,作点关于直线对称点
连接交轴于,交直线于,此时周长的最小.
∵
∴直线解析式
当时,,∴
∵
∴周长的最小值为
(2)如图:作于
∵ ∴且
∴,且 ∴
∵四边形是平行四边形 ∴
又∵
∴
∴ ∴
∵ ∴
∴
设直线的解析式
∴
∴直线解析式
科目:初中数学 来源: 题型:
【题目】小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:
∵a===2﹣
∴a﹣2=﹣
∴(a﹣2)2=3,a2﹣4a+4=3
∴a2﹣4a=﹣1
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1
请你根据小明的分析过程,解决如下问题:
(1)化简+++…+
(2)若a=,求4a2﹣8a+1的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).
(1)补全条形统计图;
(2)求出扇形统计图中册数为4的扇形的圆心角的度数;
(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:
(1)在这次调查中,一共抽取了 名学生,α= %;
(2)补全条形统计图,并求扇形统计图中C级对应的圆心角为 度;
(3)若该校共有2000名学生,请你估计该校D级学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,用正方形是墩垒石梯,下图分别表示垒到一、二阶梯时的情况,那么照这样垒下去
一级 二级
①填出下表中未填的两空,观察规律。
阶梯级数 | 一级 | 二级 | 三级 | 四级 |
石墩块数 | 3 | 9 |
②到第n级阶梯时,共用正方体石墩_______________块(用n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是一块直角三角框,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角框内部,将圆形纸片沿着三角框的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,则圆心O运动的路径长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某校学生的课外阅读情况,随机抽查了名学生周阅读用时数,结果如下表:
周阅读用时数(小时) | 4 | 5 | 8 | 12 |
学生人数(人) | 3 | 4 | 2 | 1 |
则关于这名学生周阅读所用时间,下列说法正确的是( )
A. 中位数是B. 众数是C. 平均数是D. 方差是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数、b在数轴上的位置如图所示,
(1) a+b 0 , a-b 0; (填“>”、“=”或“<”)
(2) 化简:|a|-|b|+|a-b|
(3)在数轴上表示a+b与a-b;并把、b、0、a+b、a-b按从小到的顺序用“<”连接起来。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com