精英家教网 > 初中数学 > 题目详情

【题目】完成下列证明:
如图,已知DE⊥AC于点E,BC⊥AC于点C,FG⊥AB于点G,∠1=∠2,求证:CD⊥AB.

证明:∵DE⊥AC,BC⊥AC(已知),
∴DE∥),
∴∠2=(两直线平行,内错角相等),
∵∠1=∠2,(已知),
∴∠1=),
∴GF∥CD(),
∵FG⊥AB(已知),
∴CD⊥AB.

【答案】BC;在同一平面内,垂直于同一直线的两直线平行;∠BCD;∠BCD;等量代换;同位角相等,两直线平行
【解析】证明:∵DE⊥AC,BC⊥AC(已知),

∴DE∥BC( 在同一平面内,垂直于同一直线的两直线平行),

∴∠2=∠BCD(两直线平行,内错角相等),

∵∠1=∠2,(已知),

∴∠1=∠BCD(等量代换),

∴GF∥CD(同位角相等,两直线平行),

∵FG⊥AB(已知),

∴CD⊥AB,

所以答案是:1.BC;2在同一平面内,垂直于同一直线的两直线平行;3.∠BCD;4.∠BCD;5.等量代换;6.同位角相等,两直线平行.

【考点精析】解答此题的关键在于理解平行线的判定与性质的相关知识,掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】确定一个地点的位置,下列说法正确的是(

A. 偏东30°1000 B. 西北方向

C. 距此500 D. 正南方向,距此600

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的内接△ABC的外角∠ACE的平分线交⊙O于点D.DF⊥AC,垂足为F,DE⊥BC,垂足为E.给出下列4个结论:①CE=CF;②∠ACB=∠EDF;③DE是⊙O的切线;④.其中一定成立的是(

A.①②③ B.②③④ C.①③④ D.①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学扩建教学楼,测量地基时,量得地基长为2a m,宽为(2a﹣24)m,试用a表示地基的面积,并计算当a=25时地基的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数为常数,且)的图象都经过点A(m,2).

(1)求点A的坐标及反比例函数的表达式;

(2)一次函数的图象与x轴交于点B,若点P是x轴上一点,且满足ABP的面积是2,直接写出点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(m+2x+2m0

1)求证:不论m为何值,该方程总有两个实数根;

2)若此方程的一个根是1,请求出方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某物流公司要把3000吨货物从M市运到W市.(每日的运输量为固定值)
(1)从运输开始,每天运输的货物吨数y(单位:吨)与运输时间x(单位:天)之间有怎样的函数关系式?
(2)因受到沿线道路改扩建工程影响,实际每天的运输量比原计划少20%,以致推迟1天完成运输任务,求原计划完成运输任务的天数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,正确的的是(

A.矩形的对角线互相垂直B.菱形的对角线相等

C.矩形的四个角不定相等D.正方形的对角线互相垂直且相等

查看答案和解析>>

同步练习册答案