精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程x2﹣(m+2x+2m0

1)求证:不论m为何值,该方程总有两个实数根;

2)若此方程的一个根是1,请求出方程的另一个根.

【答案】1)详见解析;(22

【解析】

1)求出根的判别式,证明该代数式不论m为何值,总大于或等于0;(2)将x=1代入原方程求出m的值,写出原方程,解该方程求另一根.

1)证明:(1)△=[-(m+2]2-4×2m=m2-4m+4=(m-2)20

∴不论m取何值,方程总有两个实数根.

2)把x=1代入原方程得,1-m-2+2m=0

m=1

x2-3x+2=0

解得:x1=1x2=2

∴方程另一个根为2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】列方程或方程组解应用题:

为了响应市政府绿色出行的号召,小张上下班由自驾车方式改为骑自行车方式.已知小张单位与他家相距20千米,上下班高峰时段,自驾车的平均速度是自行平均车速度的2倍,骑自行车所用时间比自驾车所用时间多小时.求自驾车平均速度和自行车平均速度各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学初一(二)班5位教师决定带领本班a名学生在五一期间在元旦期间去珠海长隆海洋王国旅游,每张票的价格为350元,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律六折优惠.
(1)分别用代数式表示参加这两家旅行社所需的费用;
A旅行社所需费用为 元,B旅行社所需费用为 元,
(2)如果这5位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列证明:
如图,已知DE⊥AC于点E,BC⊥AC于点C,FG⊥AB于点G,∠1=∠2,求证:CD⊥AB.

证明:∵DE⊥AC,BC⊥AC(已知),
∴DE∥),
∴∠2=(两直线平行,内错角相等),
∵∠1=∠2,(已知),
∴∠1=),
∴GF∥CD(),
∵FG⊥AB(已知),
∴CD⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:

(1)四边形EBFD是矩形;

(2)DG=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.

(1)求证:∠1=∠F

(2)若sinB=,EF=,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

【发现】

如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)

【思考】

如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?

请证明点D也不在⊙O内.

【应用】

利用【发现】和【思考】中的结论解决问题:若四边形ABCD中,AD∥BC,∠CAD=90°,点E在边AB上,CE⊥DE.

(1)作∠ADF=∠AED,交CA的延长线于点F(如图④),求证:DF为Rt△ACD的外接圆的切线;

(2)如图⑤,点G在BC的延长线上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O为△ABC的外接圆,圆心O在AB上.

(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);

(2)如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC于F.

①求证:OD⊥BC;

②求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持P P′= Q Q′,我们把这种对应点连线相等的变换称为“同步变换”。对于三种变换: ①平移、②旋转、③轴对称,其中一定是“同步变换”的有(填序号)。

查看答案和解析>>

同步练习册答案