精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.

(1)求证:∠1=∠F

(2)若sinB=,EF=,求CD的长.

【答案】(1)证明见解析;(2)3

【解析】

试题分析:(1)连接DE,由BD是⊙O的直径,得到∠DEB=90°,由于E是AB的中点,得到DA=DB,根据等腰三角形的性质得到∠1=∠B等量代换即可得到结论;

(2)g根据等腰三角形的判定定理得到AE=EF=,推出AB=2AE=,在Rt△ABC中,根据勾股定理得到BC=8,设CD=x,则AD=BD=8﹣x,根据勾股定理列方程即可得到结论.

试题解析:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;

(2)∵∠1=∠F,∴AE=EF=,∴AB=2AE=,在Rt△ABC中,AC=ABsinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵,即,∴x=3,即CD=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,以AC为直径的OBC于点D

AB于点E,过点DDFAB,垂足为F,连接DE

1)求证:直线DFO相切;

2)若AE=7BC=6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学扩建教学楼,测量地基时,量得地基长为2a m,宽为(2a﹣24)m,试用a表示地基的面积,并计算当a=25时地基的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数为常数,且)的图象都经过点A(m,2).

(1)求点A的坐标及反比例函数的表达式;

(2)一次函数的图象与x轴交于点B,若点P是x轴上一点,且满足ABP的面积是2,直接写出点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(m+2x+2m0

1)求证:不论m为何值,该方程总有两个实数根;

2)若此方程的一个根是1,请求出方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,则k的值可以是 . (写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某物流公司要把3000吨货物从M市运到W市.(每日的运输量为固定值)
(1)从运输开始,每天运输的货物吨数y(单位:吨)与运输时间x(单位:天)之间有怎样的函数关系式?
(2)因受到沿线道路改扩建工程影响,实际每天的运输量比原计划少20%,以致推迟1天完成运输任务,求原计划完成运输任务的天数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,⊙O是△ABC的外接圆,,点D在边BC上,AE∥BC,AE=BD.

(1)求证:AD=CE;

(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t.
(1)求证:在运动过程中,不管t取何值,都有SAED=2SDGC
(2)当t取何值时,△DFE与△DMG全等.

查看答案和解析>>

同步练习册答案