精英家教网 > 初中数学 > 题目详情

【题目】某物流公司要把3000吨货物从M市运到W市.(每日的运输量为固定值)
(1)从运输开始,每天运输的货物吨数y(单位:吨)与运输时间x(单位:天)之间有怎样的函数关系式?
(2)因受到沿线道路改扩建工程影响,实际每天的运输量比原计划少20%,以致推迟1天完成运输任务,求原计划完成运输任务的天数.

【答案】解:(1)∵每天运量×天数=总运量
∴xy=3000
∴y=(x>0);
(2)设原计划x天完成,根据题意得:
(1﹣20%)=
解得:x=4
经检验:x=4是原方程的根,
答:原计划4天完成.
【解析】(1)根据每天运量×天数=总运量即可列出函数关系式;
(2)根据“实际每天比原计划少运20%,则推迟1天完成任务”列出方程求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】第二届亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务.将13000用科学记数法表示为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列证明:
如图,已知DE⊥AC于点E,BC⊥AC于点C,FG⊥AB于点G,∠1=∠2,求证:CD⊥AB.

证明:∵DE⊥AC,BC⊥AC(已知),
∴DE∥),
∴∠2=(两直线平行,内错角相等),
∵∠1=∠2,(已知),
∴∠1=),
∴GF∥CD(),
∵FG⊥AB(已知),
∴CD⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.

(1)求证:∠1=∠F

(2)若sinB=,EF=,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

【发现】

如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)

【思考】

如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?

请证明点D也不在⊙O内.

【应用】

利用【发现】和【思考】中的结论解决问题:若四边形ABCD中,AD∥BC,∠CAD=90°,点E在边AB上,CE⊥DE.

(1)作∠ADF=∠AED,交CA的延长线于点F(如图④),求证:DF为Rt△ACD的外接圆的切线;

(2)如图⑤,点G在BC的延长线上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为 x ( x 大于0)秒.

(1)点C表示的数是
(2)当 秒时,点P到达点A处?
(3)运动过程中点P表示的数是(用含字母 的式子表示);
(4)当P,C之间的距离为2个单位长度时,求 x 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O为△ABC的外接圆,圆心O在AB上.

(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);

(2)如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC于F.

①求证:OD⊥BC;

②求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)

A.30.6 B.32.1 C.37.9 D.39.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形纸片ABCD中,AB=,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME/NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tanEHG=

查看答案和解析>>

同步练习册答案