精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=AC,BD、CE分别为两腰上的中线,且BDCE,则tanABC=________

【答案】3

【解析】

连接DE,过E点作EFBC,垂足为F,设DE=2x,DEABC的中位线,故BC=4x,四边形BCDE为等腰梯形,根据等腰梯形的性质可知,BF=(BC-DE)=x,则FC=3x,又BCG为等腰直角三角形,故CEF为等腰直角三角形,则EF=CF=3x,解RtBEF可求解.

如图,连接DE,过E点作EF⊥BC,垂足为F,

DE=2x,

依题意,得DE△ABC的中位线,∴BC=4x,

四边形BCDE为等腰梯形,

∴BF= (BCDE)=x,则FC=3x,

∵BD⊥CE,

∴△BCG为等腰直角三角形,

∵EF⊥BC,

∴△CEF为等腰直角三角形,

∴EF=CF=3x,

Rt△BEF中,EF=3x,BF=x,

∴tan∠ABC===3.

故答案为:3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点B60)的直线AB轴相交于点C06),与直线OA相交于点A且点A纵坐标为2,动点P沿路线OAC运动.

1)求直线BC的解析式.

2)求的面积.

3)当的面积是的面积的时,求出这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.

(1)建立如图所示的平面直角坐标系,求抛物线的解析式.

(2)该运动员身高1.8m,在这次跳投中,球在头顶上0.25m处出手,

问:球出手时,他距离地面的高度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一块材料的形状是锐角三角形ABC,边BC=12cm,高AD=8cm,把它加工成矩形零件如图,要使矩形的一边在BC上,其余两个顶点分别在AB,AC上.且矩形的长与宽的比为3:2,求这个矩形零件的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分9分)

为了考察甲、乙两种成熟期小麦的株高长势状况,现从中各随机抽取6株,并测得它们的株高(单位:cm)如下表所示:

63

66

63

61

64

61

63

65

60

63

64

63

(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?

(2)现将进行两种小麦优良品种杂交试验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对状况.请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法错误的是(

A.0.350是精确到0.001的近似数

B.3.80万是精确到百位的近似数

C.一个鸡蛋的质量为50.47g,用四舍五入法将50.47精确到0.1的近似值为51.0

D.近似数2.20是由数四舍五入得到的,那么数的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一座石拱桥的桥拱是以为圆心,为半径的一段圆弧.

请你确定弧的中点;(要求:用尺规作图,保留作图痕迹,不写作法和证明)

如果已知石拱桥的桥拱的跨度(即弧所对的弦长)为米,拱高(即弧的中点到弦的距离)为米,求桥拱所在圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象与x轴的两个交点A,B关于直线x=﹣1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为________ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:

向上点数

1

2

3

4

5

6

出现次数

8

10

7

9

16

10

(1)计算出现向上点数为6的频率.

(2)丙说:如果抛600次,那么出现向上点数为6的次数一定是100次.请判断丙的说法是否正确并说明理由.

(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.

查看答案和解析>>

同步练习册答案