精英家教网 > 初中数学 > 题目详情

【题目】按要求画图,并解答问题

1)如图,取BC边的中点D,画射线AD

2)分别过点BCBEAD于点ECFAD于点F

3BECF的位置关系是   ;通过度量猜想BECF的数量关系是   

【答案】1)详见解析;(2)详见解析;(3BECFBECF

【解析】

1)根据中点的定义和射线的概念作图即可;

2)根据垂线的概念作图即可得;

3)根据平行线的判定以及全等三角形的判定与性质进行解答即可得.

解:(1)如图所示,射线AD即为所求;

2)如图所示BECF即为所求;

3)由测量知BECFBECF

BEADCFAD

∴∠BED=∠CFD90°,∴BECF

又∵∠BDE=∠CDFBDCD

∴△BDE≌△CDFAAS),

BECF

故答案为:BECFBECF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DEBC于点F,连接BE,EF.

(1)CDBE相等?若相等,请证明;若不相等,请说明理由;

(2)若∠BAC=90°,求证:BF2+CD2=FD2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,给出如下定义:对于点P(m,n),若点Q(2﹣m,n﹣1),则称点Q为点P“δ.例如:点(﹣2,5)的“δ坐标为(4,4).

(1)某点的“δ的坐标是(﹣1,3),则这个点的坐标为

(2)若点A的坐标是(2﹣m,n﹣1),点A“δA1点,点A1“δA2点,点A2“δA3点,,点A1的坐标是 ;点A2015的坐标是

(3)函数y=﹣x2+2x(x≤1)的图象为G,图象G上所有点的“δ构成图象H,图象G与图象H的组合图形记为图形Ю”,当点(p,q)在图形Ю”上移动时,若k≤p≤1+2,﹣8≤q≤1,k的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,∠B=60°.GCD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CEDF,下列说法不正确的是( )

A. 四边形CEDF是平行四边形

B. 时,四边形CEDF是矩形

C. 时,四边形CEDF是菱形

D. 时,四边形CEDF是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中, , AC=BC=3, ABC折叠,使点A落在BC 边上的点D处,EF为折痕,若AE=2,则的值为_____________.

【答案】

【解析】分析:过点DDGAB于点G.根据折叠性质,可得AE=DE=2AF=DFCE=1

RtDCE中,由勾股定理求得所以DB=RtABC中,由勾股定理得RtDGB中,由锐角三角函数求得

AF=DF=xFG= RtDFG中,根据勾股定理得方程=解得,从而求得.的值

详解:

如图所示,过点DDGAB于点G.

根据折叠性质,可知AEFDEF

∴AE=DE=2AF=DFCE=AC-AE=1

RtDCE中,由勾股定理得

DB=

RtABC中,由勾股定理得

RtDGB中,

AF=DF=xFG=AB-AF-GB=

RtDFG

=

解得

==.

故答案为: .

点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题.

型】填空
束】
18

【题目】规定:[x]表示不大于x 的最整数,(x) 表示不小于x的最小整数,[x) 表示最接近x的整数(xn+0.5n为整数),例如:[2.3]=2(2.3)=3[2.3)=2,则下列说法正确的是__________(写出所有正确说法).

①当x=1.7时,[x]+(x)+[x)=6

②当x=-2.1时,[x]+(x)+[x)=-7

③方程4[x]+3(x)+[x)=11的解为1<x<1.5

④当-1<x<1, 函数y=[x]+(x)+x 的图像y=4x 的图像有两个交点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是线段上任一点,两点分别从同时向点运动,且点的运动速度为点的运动速度为,运动的时间为.

1)若

①运动后,求的长;

②当在线段上运动时,试说明

2)如果时,,试探索的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市雾霾天气趋于严重,甲商场根据民众健康需要,代理销售每台进价分别为600元、560

元的 A、B 两种型号的空气净化器,如表是近两周的销售情况:(进价、售价均保持不变,利润=

售收入进货成本)

销售时段

销售数量

销售收入

(元)

A种型号

(台)

B种型号

(台)

第一周

3

2

3960

第二周

5

4

7120

(1)求 AB 两种型号的空气净化器的销售单价;

(2)该商店计划一次购进两种型号的空气净化器共30台,其中B型净化器的进货量不超过A型的2.设购进A型空气净化器为x台,这30台空气净化器的销售总利润为y.

①请写出y关于x的函数关系式;

②该商店购进A型、B型净化器各多少台,才能使销售总利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC为含60°角的直角三角板,三角形BDE为含45°角的直角三角板.

1)如图1,若点DAB上,则∠EBC的度数为  

2)如图2,若∠EBC170°,则∠α的度数为  

3)如图3,若∠EBC118°,求∠α的度数;

4)如图3,若<∠α60°,求∠ABE-∠DBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,AB两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映st之间函数关系的是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案