【题目】如图,直线是线段的垂直平分线,交线段于点,在下方的直线上取一点,连接,以线段为边,在上方作正方形,射线交直线于点,连接.
(1)设,求的度数;
(2)写出线段、之间的等量关系,并证明.
【答案】(1)45° ;(2),证明见解析.
【解析】
(1)由线段的垂直平分线的性质可得PM=PN,且PO⊥MN,由等腰三角形的性质可得∠PMN=∠PNM=α,由正方形的性质可得AP=PN,∠APN=90°,可得∠APO=α,由三角形的外角性质可求∠AMN的度数;
(2)由等腰直角三角形的性质和正方形的性质可得MN=CN,AN=BN,∠MNC=∠ANB=45°,可证△CBN∽△MAN,可得AM=BC.
(1)如图,连接MP,
∵直线l是线段MN的垂直平分线,
∴PM=PN,且PO⊥MN
∴∠PMN=∠PNM=α
∴∠MPO=∠NPO=90°-α,
∵四边形ABNP是正方形
∴AP=PN,∠APN=90°
∴AP=MP,∠APO=90°-(90°-α)=α
∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,
∵AP=PM
∴∠PMA=∠PAM= =45°+α,
∴∠AMN=∠AMP-∠PMN=45°+α-α=45°
(2)AM=BC
理由如下:
如图,连接AN,CN,
∵直线l是线段MN的垂直平分线,
∴CM=CN,
∴∠CMN=∠CNM=45°,
∴∠MCN=90°
∴MN=CN,
∵四边形APNB是正方形
∴∠ANB=∠BAN=45°
∴AN=BN,∠MNC=∠ANB=45°
∴∠ANM=∠BNC
又∵
∴△CBN∽△MAN
∴
∴AM=BC
科目:初中数学 来源: 题型:
【题目】(如图 1,若抛物线 l1 的顶点 A 在抛物线 l2 上,抛物线 l2 的顶点 B 也在抛物线 l1 上(点 A 与点 B 不重合).我们称抛物线 l1,l2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.
(1)如图2,抛物线 l3: 与y 轴交于点C,点D与点C关于抛物线的对称轴对称,则点 D 的坐标为 ;
(2)求以点 D 为顶点的 l3 的“友好”抛物线 l4 的表达式,并指出 l3 与 l4 中y 同时随x增大而增大的自变量的取值范围;
(3)若抛物线 y=a1(x-m)2+n 的任意一条“友好”抛物线的表达式为 y=a2(x-h)2+k, 写出 a1 与a2的关系式,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正六边形的对称中心在反比例函数(,)的图象上,边在轴上,点在轴上,已知.
(1)点是否在该反比例函数的图象上?请说明理由;
(2)若该反比例函数图象与交于点,求点的横坐标;
(3)平移正六边形,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求证:相似三角形对应角的角平分线之比等于相似比.
要求:①分别在给出的相似三角形△ABC与△DEF中用尺规作出一组对应角的平分线,不写作法,保留作图痕迹;
②在完成作图的基础上,写出已知、求证,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B两班学生测试成绩在80≤x<90这一组的数据如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B两班学生测试成绩的平均数、中位数、方差如下:
平均数 | 中位数 | 方差 | |
A班 | 80.6 | m | 96.9 |
B班 | 80.8 | n | 153.3 |
根据以上信息,回答下列问题:
(1)补全数学成绩频数分布直方图;
(2)写出表中m、n的值;
(3)请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是( )
A. ①②都对 B. ①②都错 C. ①对②错 D. ①错②对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com