【题目】如图,平面直角坐标系中,直线AB:y=x+b交y轴于点A(0,4),交x轴于点B.
(1)求点B的坐标;
(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.
①用含n的代数式表示△ABP的面积;
②当S△ABP=8时,求点P的坐标;
(3)在(2)中②的条件下,以PB为斜边作等腰直角△PBC,求点C的坐标。
【答案】(1)(4,0);(2)①S△ABP =2n4.;②(2,6);(3)(6,4)或(0,2)
【解析】
(1)把点A的坐标代入直线解析式可求得b=4,则直线的解析式为y=-x+4,令y=0可求得x=4,故此可求得点B的坐标;
(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n-4;
②由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;
③如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.
(1)∵把A(0,4)代入y=x+b得b=4
∴直线AB的函数表达式为:y=x+4.
令y=0得:x+4=0,解得:x=4
∴点B的坐标为(4,0).
(2)①∵l垂直平分OB,
∴OE=BE=2.
∵将x=2代入y=x+4得:y=2+4=2.
∴点D的坐标为(2,2).
∵点P的坐标为(2,n),
∴PD=n2.
∵S△APB=S△APD+S△BPD,
∴S△ABP= PDOE+PDBE= (n2)×2+ (n2)×2=2n4.
②∵S△ABP=8,
∴2n4=8,解得:n=6.
∴点P的坐标为(2,6).
(3)如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.
设点C(p,q).
∵△PBC为等腰直角三角形,PB为斜边,
∴PC=CB,∠PCM+∠MCB=90°.
∵CM⊥l,BN⊥CM,
∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.
∴∠MPC=∠NCB.
在△PCM和△CBN中,
,
∴△PCM≌△CBN.
∴CM=BN,PM=CN.
∴ ,解得 .
∴点C的坐标为(6,4).
如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.
设点C(p,q).
∵△PBC为等腰直角三角形,PB为斜边,
∴PC=CB,∠PCM+∠MCB=90°.
∵CM⊥l,BN⊥CM,
∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.
∴∠MPC=∠NCB.
,
∴△PCM≌△CBN.
∴CM=BN,PM=CN.
∴ ,解得 .
∴点C的坐标为(0,2).
综上所述点C的坐标为(6,4)或(0,2).
科目:初中数学 来源: 题型:
【题目】先化简,再求值
(1)(a+2b)(a﹣2b)+(a+2b)2+4ab,其中a=1,b=;
(2)(﹣a2b+2ab﹣b2)÷b+(a+b)(a﹣b),其中a=,b=﹣1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC中,AB=AC,∠B=36°,D、E是BC上两点,且∠ADE=∠AED=2∠BAD,则图中等腰三角形共有( )
A.3个B.4个C.5个D.6个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )
A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B. 掷一枚质地均匀的正六面体骰子,向上一面的点数是4
C. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃
D. 抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:∠MON=30o,点A1、A2、A3 在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7 的边长为【 】
A.6 B.12 C.32 D.64
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某旅行社为吸引市民组团去天水湾风景区旅游,推出如下收费标准:
如果人数不超过人,人均旅游费用为元;
如果人数超过人,每增加人,人均旅游费用降低元,但人均旅游费用不得低于元.
某单位共付给该旅行社旅游费用元,问:该单位这次共有多少员工去天水湾风景区旅游?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com