【题目】两地相距,甲、乙二人分别骑自行车和摩托车沿相同路线匀速行驶,由地到达地.他们行驶的路程与甲出发后的时间之间的函数图像如图所示.
(1)乙比甲晚出发几小时?乙比甲早到几小时?
(2)分别写出甲、乙行驶的路程与甲出发后的时间的函数关系式(不写自变量的取值范围).
(3)乙在甲出发后几小时追上甲?追上甲的地点离地有多远?
【答案】(1)乙比甲晚出发小时,早到小时;(2),;(3)乙在甲出发小时时追上甲,追上甲的地点距地.
【解析】
(1)利用函数图象确定甲乙出发的时间和到达的时间,从而解决问题;
(2)利用待定系数法求两个解析式;
(3)先解方程得到乙在甲出发后追上甲的时间,然后计算此时甲行驶的路程.
解:(1)乙比甲晚出发小时,早到小时;
(2)设甲的函数关系式为,其图象经过(4,60);
∴,,
甲的函数关系式为.
设乙的函数关系式为;其图象经过(1,0)、(2,60),
∴ ,
解得:,
即乙的函数关系式为.
(3)设乙在甲出发小时追上甲,得,
解得,
追上甲的地点距地:.
答:乙在甲出发小时时追上甲,追上甲的地点距地.
科目:初中数学 来源: 题型:
【题目】如图1,AB,BC被直线AC所截,点D是线段AC上的点,过点D作DE//AB,连接AE,∠B=∠E=70°.
(1)请说明AE//BC的理由.
(2)将线段AE沿着直线AC平移得到线段PQ,连接DQ.
①如图2,当DE⊥DQ时,求∠Q的度数;
②在整个运动中,当∠Q=2∠EDQ时,则∠Q= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.
(1)问实际每年绿化面积多少万平方米?
(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知下列命题:
①若a>0,b>0,则a+b>0;
②若a2=b2,则a=b;
③线段垂直平分线上的点到线段两端点距离相等;
④平行四边形的对角线互相平分
其中原命题与逆命题均为真命题的是( )
A. ①③ B. ②④ C. ③④ D. ②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD⊥BC,EG⊥BC,垂足分别为D、G、AD平分∠BAC,求证:∠E=∠4.
证明:∵AD⊥BC,EG⊥BC(已知)
∴AD∥EG( )
∴∠2=∠3( )
∠1= (两直线平行,同位角相等)
∵AD平分∠BAC(已知)
∴∠1=∠2( )
∴∠E=∠3( )
∵∠3=∠4( )
∴∠E=∠4(等量代换)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们已经学过用尺规作一条线段等于已知线段、作一个角等于已知角.请同学们看下面一个尺规作图的例子:
①以O为圆心,任意长为半径作弧线交∠AOB的两边OA、OB分别于C、D两点;
②以C为圆心,大于CD的长为半径作弧线,再以D为圆心,同样的长为半径作弧线,两弧线交于P点;
③以O为端点作射线OP.
则OP就是∠AOB的平分线
你知道OP为什么是∠AOB的角平分线吗?请用你所学的知识解释.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小组作“用频率估计概率的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能的是()
A. 掷一个质地均匀的正六面体骰子,向上的面点数是4
B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
C. 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
D. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一次函数,下列结论正确的是( )
A.函数值随自变量的增大而增大
B.函数的图象不经过第一象限
C.函数的图象向下平移4个单位长度得的图象
D.函数的图象与轴的交点坐标是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com