精英家教网 > 初中数学 > 题目详情

【题目】关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)设方程的两个实数根分别为x1、x2 , 存不存在这样的实数k,使得|x1|﹣|x2|= ?若存在,求出这样的k值;若不存在,说明理由.

【答案】
(1)解:∵方程有两个不相等的实数根,

∴△=[﹣(2k﹣1)]2﹣4(k2﹣2k+3)=4k﹣11>0,

解得:k>


(2)解:存在,

∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,

∴将|x1|﹣|x2|= 两边平方可得x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,

代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,

解得:4k﹣11=5,

解得:k=4.


【解析】(1)一元二次方程有两个不相等的实数根的条件是判别式>0,构建关于k的不等式,解出不等式即可;(2)先由两根之积x1x2=k2﹣2k+3=(k﹣1)2+2>0,判断出二者同号, 可去绝对值:同正,|x1|﹣|x2|=x1-x2,同负,|x1|﹣|x2|=-(x1-x2),然后两边同时平方,即可求出k.
【考点精析】关于本题考查的求根公式和根与系数的关系,需要了解根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】[知识生成]通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.例如:如图①是一个长为,宽为的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.请解答下列问题:

1)图②中阴影部分的正方形的边长是________________;

2)请用两种不同的方法求图②中阴影部分的面积:

方法1:________________________;方法2_______________________;

3)观察图②,请你写出之间的等量关系是__________;

4)根据(3)中的等量关系解决如下问题:若,,=________;

[知识迁移]

类似地,用两种不同的方法计算同一几何体的体积,也可以得到一个恒等式.

5)根据图③,写出一个代数恒等式:____________________________;

6)已知,利用上面的规律求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=2x+4

(1)在如图所示的平面直角坐标系中,画出函数的图象;

2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;

(3)在(2)的条件下,求出△AOB的面积;

(4)利用图象直接写出:当y<0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:OBOCOMON内的射线.

如图1,若OM平分ON平分OB绕点O内旋转时,则的大小为______

如图2,若OM平分ON平分绕点O内旋转时,求的大小;

的条件下,若,当内绕着点O秒的速度逆时针旋转t秒时,中的一个角的度数恰好是另一个角的度数的两倍,求t的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: + ﹣6sin45°+(﹣1)2009

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:OBOCOMON内的射线.

如图1,若OM平分ON平分OB绕点O内旋转时,则的大小为______

如图2,若OM平分ON平分绕点O内旋转时,求的大小;

的条件下,若,当内绕着点O秒的速度逆时针旋转t秒时,中的一个角的度数恰好是另一个角的度数的两倍,求t的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:

(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2

(2)求出点P在CD上运动时S与t之间的函数表达式;

(3)当t为何值时,三角形APD的面积为10 cm2?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).

①请画出△ABC关于x轴对称的△A1B1C1 , 并写出点A1的坐标;
②请画出△ABC绕点B逆时针旋转90°后的△A2BC2 , 并写出点A2、C2的坐标.

查看答案和解析>>

同步练习册答案