【题目】如图,抛物线y=nx2﹣3nx﹣4n(n<0)与x轴交于B、C两点(点B在点C的左侧),且抛物线与y轴交于点A.
(1)点B的坐标为 ,点C的坐标为 ;
(2)若∠BAC=90°,求抛物线的解析式.
(3)点M是(2)中抛物线上的动点,点N是其对称轴上的动点,是否存在这样的点M、N,使得以A、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
【答案】(1)(﹣1,0),(4,0);(2)y=﹣x2+x+2;(3)点M的坐标分别为:(﹣,﹣)或(,﹣)或(,).
【解析】
(1)利用x轴上点的坐标特点即可得出结论;
(2)判断出△AOB∽△COA,建立方程求出OA,进而得出点A坐标,最后用待定系数法即可的结论;
(3)设出点M,N的坐标,分三种情况,利用中点坐标公式建立方程求解即可得出结论.
(1)令y=0,
∴nx2-3nx-4n=0,
∵n<0,
∴x2-2x-4=0,
∴x=-1或x=4,
∴B(-1,0),C(4,0);
(2)∵∠BAC=90°,AO⊥BC,
易证△AOB~△COA,
∴,,
∴OA=2,
故A(0,2),
则设抛物线的解析式为:y=a(x-x1)( x-x2),
把A(0,2)、B(-1,0)、C(4,0)代入上式得,-4a=2,
∴,
∴,
∴对称轴直线为,
∴设N(,b),M(m,),
以A、C、M、N为顶点的四边形是平行四边形,
∴①当AC为对角线时,,
∴.
∴M(,).
②当AM为对角线时,,
∴.
∴M(,-).
③当AN为对角线时,,
∴.
∴M(,-).
即:抛物线上存在这样的点M,点M的坐标分别为:M(,)或(,-)或(,-).
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC 中,∠ABC=90°,AB=BC= ,三角形的顶点在相互平行的三条直线l1、l2、l3 上,且 l2、l3之间的距离为 2,则 l1、l2 之间的距离为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】测量物体高度
小明想测量一棵树的高度,在阳光下,小明测得一根长为米的竹竿的影长为米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为米,落在地面上的影长为米,则树高为多少米.
小明在某一时刻测得的杆子在阳光下的影子长为,他想测量电线杆的高度,但其影子恰好落在土坡的坡面和地面上,量得,,与地面成.
求电线杆的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中秋节是我国的传统节日,人们素有吃月饼的习俗.某超市在中秋节来临之际用3000元购进A、B两种月饼1100个,若购买A种月饼与购买B种月饼的费用相同,且A种月饼的单价是B种月饼单价的1.2倍.
(1)求A、B两种月饼的单价各是多少?
(2)若计划用不超过7000元的资金再次购进A、B两种月饼共2600个,已知A、B两种月饼的进价不变.求A种月饼最多能购进多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线BC:,直线BD与x轴交于点A,点B(2,3),点D(0,).
(1)求直线BD的函数解析式;
(2)在y轴上找一点P,使得△ABC与△ACP的面积相等,求出点P的坐标;
(3)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)为加强与家长的沟通,某校在家长会到来之前需印刷《致家长的一封信》等材料以作宣传,该校的印刷任务原来由甲复印店承接,其收费y(元)与印刷页数x(页)的函数关系如图所示.
(1)从图象中可看出:印刷超过500页部分每页收费 元;
(2)现在乙印刷厂表示:每页0.15元收费.另收200元的制版费,乙印刷厂收费y(元)与印刷页数x(页)的函数关系为 ;
(3)在给出的坐标系内画出(2)中的函数图象,并结合函数图象回答印刷页数在3000页左右应选择哪个印刷店?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.
(1)求证:∠BAD=∠CAE;
(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;
(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形.我们把(图乙)第一次顺次连接各边中点所进行的分割,称为阶分割(如图);把阶分割得出的个三角形再分别顺次连接它的各边中点所进行的分割,称为阶分割(如图)…,依此规则操作下去.阶分割后得到的每一个小三角形都是全等三角形(为正整数),设此时小三角形的面积为.请写出一个反映,,之间关系的等式________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com